MDM2-Dependent Downregulation of p21 and hnRNP K Provides a Switch between Apoptosis and Growth Arrest Induced by Pharmacologically Activated p53

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
Cancer cell (Impact Factor: 23.89). 04/2009; 15(3):171-83. DOI: 10.1016/j.ccr.2009.01.019
Source: PubMed

ABSTRACT We have previously identified the p53-reactivating compound RITA in a cell-based screen. Here, using microarray analysis, we show that the global transcriptional response of tumor cells to RITA is p53 dependent. Pathway analysis revealed induction of the p53 apoptosis pathway, consistent with apoptosis being the major response to RITA in cancer cells. We uncovered that MDM2 released from p53 by RITA promotes degradation of p21 and the p53 cofactor hnRNP K, required for p21 transcription. Functional studies revealed MDM2-dependent inhibition of p21 as a key switch regulating cell fate decisions upon p53 reactivation. Our results emphasize the utility of targeting wild-type p53 protein itself as a promising approach for anticancer therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been confirmed through studies using the technique of unbiased sequencing that the TPp53 tumour suppressor is the most frequently inactivated gene in cancer. This finding, together with results from earlier studies, provides compelling evidence for the idea that p53 ablation is required for the development and maintenance of tumours. Genetic reconstitution of the function of p53 leads to the suppression of established tumours as shown in mouse models. This strongly supports the notion that p53 reactivation by small molecules could provide an efficient strategy to treat cancer. In this review, we summarize recent advances in the development of small molecules that restore the function of mutant p53 by different mechanisms, including stabilization of its folding by Apr-246, which is currently being tested in a Phase II clinical trial. We discuss several classes of compounds that reactivate wild-type p53, such as Mdm2 inhibitors, which are currently undergoing clinical testing, MdmX inhibitors and molecules targeting factors upstream of Mdm2/X or p53 itself. Finally, we consider the clinical applications of compounds targeting p53 and the p53 pathway.This article is protected by copyright. All rights reserved.
    Journal of Internal Medicine 12/2014; DOI:10.1111/joim.12336 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On October 28th 1943 Winston Churchill said "we shape our buildings, and afterward our buildings shape us" (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the "convenience and dignity" that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
    Frontiers in Genetics 01/2015; 6:108. DOI:10.3389/fgene.2015.00108
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p53 Tumor suppressor gene encodes for a critical cellular protein that regulates the integrity of the cell and can induce cell cycle arrest and/or apoptosis upon cellular stresses of several origins, including chemotherapeutics. Loss of p53 function occurs in an estimated 50% of all cancers by mutations and deletions while in the presence of wild-type p53 alleles other mechanisms may affect the expression and activity of p53. Alternate mechanisms include methylation of the promoter of p53, deletion or epigenetic inactivation of the p53-positive regulator p14/ARF, elevated expression of the p53 regulators murine double minute 2 (MDM2) and MDMX, or alteration of upstream regulators of p53 such as the kinase ATM. MDM2 is a p53 E3 ubiquitin ligase that mediates the ubiquitin-dependent degradation of p53 while p14/ARF is a small MDM2-binding protein that controls the activity of MDM2 by displacing p53 and preventing its degradation. MDMX antagonize p53-dependent transcriptional control by interfering with p53 transactivation function. The understanding of the key role of p53 inactivation in cancer development generated considerable interest in developing compounds that are capable of restoring the p53 functions. Several patents have been issued on such compounds. Adenovirus-based p53 gene therapy as well as small molecules such as PRIMA that can restore the transcriptional transactivation function to mutant p53, or NUTLIN and RITA that interfere with MDM2-directed p53 degradation, have tested in a preclinical setting and some of these approaches are currently in clinical development.
    Topics in Anti-Cancer Research, Edited by Atta-ur-Rahman and Khurshid Zaman, 01/2012: chapter 1978-1-60805-612-5: pages 192-227; BENTHAM SCIENCE., ISBN: 978-1-60805-612-5

Full-text (2 Sources)

Available from
Jun 1, 2014