Article

Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults.

Johns Hopkins Medical Institutions, Johns Hopkins University, John R Burton Pavilion, 5505 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
Experimental gerontology (Impact Factor: 3.34). 02/2009; 44(5):350-5. DOI: 10.1016/j.exger.2009.02.004
Source: PubMed

ABSTRACT Interleukin-6 (IL-6) is an inflammatory cytokine that influences the development of inflammatory and aging-related disorders and ultimately longevity. In order to study the influence of variants in genes that regulate inflammatory response on IL-6 levels and longevity, we screened a panel of 477 tag SNPs across 87 candidate genes in >5000 older participants from the population-based Cardiovascular Health Study (CHS). Baseline plasma IL-6 concentration was first confirmed as a strong predictor of all-cause mortality. Functional alleles of the IL6R and PARP1 genes were significantly associated with 15%-20% higher baseline IL-6 concentration per copy among CHS European-American (EA) participants (all p<10(-4)). In a case/control analysis nested within this EA cohort, the minor allele of PARP1 rs1805415 was nominally associated with decreased longevity (p=0.001), but there was no evidence of association between IL6R genotype and longevity. The PARP1 rs1805415--longevity association was subsequently replicated in one of two independent case/control studies. In a pooled analysis of all three studies, the "risk" of longevity associated with the minor allele of PARP1 rs1805415 was 0.79 (95%CI 0.62-1.02; p=0.07). These findings warrant further study of the potential role of PARP1 genotype in inflammatory and aging-related phenotypes.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80-99 years old) and their offspring (50.2 ± 4.0 years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.
    Oxidative medicine and cellular longevity 01/2013; 2013:189129. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although gene-environment interactions are known to significantly influence psychopathology-related disease states, only few animal models cover both the genetic background and environmental manipulations. Therefore, we have taken advantage of the bidirectionally inbred high (HAB) and low (LAB) anxiety-related behavior mouse lines to generate HAB × LAB F1 hybrids that intrinsically carry both lines' genetic characteristics, and subsequently raised them in three different environments-standard, enriched (EE) and chronic mild stress (CMS). Assessing genetic correlates of trait anxiety, we focused on two genes already known to play a role in HAB vs. LAB mice, corticotropin releasing hormone receptor type 1 (Crhr1) and high mobility group nucleosomal binding domain 3 (Hmgn3). While EE F1 mice showed decreased anxiety-related and increased explorative behaviors compared to controls, CMS sparked effects in the opposite direction. However, environmental treatments affected the expression of the two genes in distinct ways. Thus, while expression ratios of Hmgn3 between the HAB- and LAB-specific alleles remained equal, total expression resembled the one observed in HAB vs. LAB mice, i.e., decreased after EE and increased after CMS treatment. On the other hand, while total expression of Crhr1 remained unchanged between the groups, the relative expression of HAB- and LAB-specific alleles showed a clear effect following the environmental modifications. Thus, the environmentally driven bidirectional shift of trait anxiety in this F1 model strongly correlated with Hmgn3 expression, irrespective of allele-specific expression patterns that retained the proportions of basic differential HAB vs. LAB expression, making this gene a match for environment-induced modifications. An involvement of Crhr1 in the bidirectional behavioral shift could, however, rather be due to different effects of the HAB- and LAB-specific alleles described here. Both candidate genes therefore deserve attention in the complex regulation of anxiety-related phenotypes including environment-mediated effects.
    Frontiers in Behavioral Neuroscience 03/2014; 8:87. · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is a physiological process that repairs tissues in response to endogenous or exogenous aggressions. Nevertheless, a chronic state of inflammation may have detrimental consequences. Aging is associated with increased levels of circulating cytokines and proinflammatory markers. Aged-related changes in the immune system, known as immunosenescence, and increased secretion of cytokines by adipose tissue, represent the major causes of chronic inflammation. This phenomenon is known as "inflamm-aging." High levels of interleukin (IL)-6, IL-1, tumor necrosis factor-α, and C-reactive protein are associated in the older subject with increased risk of morbidity and mortality. In particular, cohort studies have indicated TNF-α and IL-6 levels as markers of frailty. The low-grade inflammation characterizing the aging process notably concurs at the pathophysiological mechanisms underlying sarcopenia. In addition, proinflammatory cytokines (through a variety of mechanisms, such as platelet activation and endothelial activation) may play a major role in the risk of cardiovascular events. Dysregulation of the inflammatory pathway may also affect the central nervous system and be involved in the pathophysiological mechanisms of neurodegenerative disorders (eg, Alzheimer disease).The aim of the present review was to summarize different targets of the activity of proinflammatory cytokines implicated in the risk of pathological aging.
    Journal of the American Medical Directors Association 06/2013; 14(12). · 5.30 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
Jun 1, 2014