Article

Dscam mediates remodeling of glutamate receptors in Aplysia during de novo and learning-related synapse formation.

Howard Hughes Medical Institute, Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
Neuron (Impact Factor: 15.77). 03/2009; 61(4):527-40. DOI: 10.1016/j.neuron.2009.01.010
Source: PubMed

ABSTRACT Transsynaptic interactions between neurons are essential during both developmental and learning-related synaptic growth. We have used Aplysia neuronal cultures to examine the contribution of transsynaptic signals in both types of synapse formation. We find that during de novo synaptogenesis, specific presynaptic innervation is required for the clustering of postsynaptic AMPA-like but not NMDA-like receptors. We further find that the cell adhesion molecule Dscam is involved in these transsynaptic interactions. Inhibition of Dscam either pre- or postsynaptically abolishes the emergence of synaptic transmission and the clustering of AMPA-like receptors. Remodeling of both AMPA-like and NMDA-like receptors also occurs during learning-related synapse formation and again requires the reactivation of Dscam-mediated transsynaptic interactions. Taken together, these findings suggest that learning-induced synapse formation recapitulates, at least in part, aspects of the mechanisms that govern de novo synaptogenesis.

1 Bookmark
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explore the role of both Aplysia cell adhesion molecule (ApCAM) and activity of specific protein kinase C (PKC) isoforms in the initial formation of sensory neuron synapses with specific postsynaptic targets (L7 but not L11), we examined presynaptic growth, initial synapse formation, and the expression of the presynaptic neuropeptide sensorin following cell-specific reduction of ApCAM or of a novel PKC activity. Synapse formation between sensory neurons and L7 begins by 3 h after plating and is accompanied by a rapid accumulation of a novel PKC to sites of synaptic interaction. Reducing ApCAM expression specifically from the surface of L7 blocks presynaptic growth and initial synapse formation, target-induced increase of sensorin in sensory neuron cell bodies and the rapid accumulation of the novel PKC to sites of interaction. Selective blockade of the novel PKC activity in L7, but not in sensory neurons, with injection of a dominant negative construct that interferes with the novel PKC activity, produces the same actions as downregulating ApCAM; blockade of presynaptic growth and initial synapse formation, and the target-induced increase of sensorin in sensory neuron cell bodies. The results indicate that signals initiated by postsynaptic cell adhesion molecule ApCAM coupled with the activation of a novel PKC in the appropriate postsynaptic neuron produce the retrograde signals required for presynaptic growth associated with initial synapse formation, and the target-induced expression of a presynaptic neuropeptide critical for synapse maturation.
    Journal of Neuroscience 06/2010; 30(25):8353-66. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How the brain maintains long-term memories is one of the major outstanding questions in modern neuroscience. Evidence from mammalian studies indicates that activity of a protein kinase C (PKC) isoform, protein kinase Mζ (PKMζ), plays a critical role in the maintenance of long-term memory. But the range of memories whose persistence depends on PKMζ, and the mechanisms that underlie the effect of PKMζ on long-term memory, remain obscure. Recently, a PKM isoform, known as PKM Apl III, was cloned from the nervous system of Aplysia. Here, we tested whether PKM Apl III plays a critical role in long-term memory maintenance in Aplysia. Intrahemocoel injections of the pseudosubstrate inhibitory peptide ZIP (ζ inhibitory peptide) or the PKC inhibitor chelerythrine erased the memory for long-term sensitization (LTS) of the siphon-withdrawal reflex (SWR) as late as 7 d after training. In addition, both PKM inhibitors disrupted the maintenance of long-term (≥ 24 h) facilitation (LTF) of the sensorimotor synapse, a form of synaptic plasticity previously shown to mediate LTS of the SWR. Together with previous results (Bougie et al., 2009), our results support the idea that long-term memory in Aplysia is maintained via a positive-feedback loop involving PKM Apl III-dependent protein phosphorylation. The present data extend the known role of PKM in memory maintenance to a simple and well studied type of long-term learning. Furthermore, the demonstration that PKM activity underlies the persistence of LTF of the Aplysia sensorimotor synapse, a form of synaptic plasticity amenable to rigorous cellular and molecular analyses, should facilitate efforts to understand how PKM activity maintains memory.
    Journal of Neuroscience 04/2011; 31(17):6421-31. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome is caused by the loss of Fragile X mental retardation protein (FMRP), an RNA-binding protein that suppresses protein translation. We found that FMRP binds to Down syndrome cell adhesion molecule (Dscam) RNA, a molecule that is involved in neural development and has been implicated in Down syndrome. Elevated Dscam protein levels in FMRP null Drosophila and in flies with three copies of the Dscam gene both produced specific and similar synaptic targeting errors in a hard-wired neural circuit, which impaired the flies' sensory perception. Reducing Dscam levels in FMRP null flies reduced synaptic targeting errors and rescued behavioral responses. Our results indicate that excess Dscam protein may be a common molecular mechanism underlying altered neural wiring in intellectual disabilities such as Fragile X and Down syndromes.
    Nature Neuroscience 05/2013; · 15.25 Impact Factor

Full-text

View
0 Downloads
Available from