Article

Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus.

Trudeau Institute, Saranac Lake, NY 12983, USA.
Immunity (Impact Factor: 19.75). 03/2009; 30(3):421-33. DOI: 10.1016/j.immuni.2009.01.006
Source: PubMed

ABSTRACT Immunity to the intestinal parasite Heligomosomoides polygyrus is dependent on the successful generation of T helper 2 (Th2) memory cells. We showed that B cells contribute to immunity against H. polygyrus by producing antibody (Ab) and by promoting expansion and differentiation of primary and memory Th2 cells. We also demonstrated that cytokine-producing effector B cells were essential for effective immunity to H. polygyrus. Tumor necrosis factor alpha production by B cells was necessary for sustained Ab production, whereas interleukin 2 production by B cells was necessary for Th2 cell expansion and differentiation. These results show that B cells mediate protection from pathogens not only by presenting antigen and secreting antibody but also by producing cytokines that regulate the quality and magnitude of humoral and cellular immune responses.

1 Bookmark
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection.
    The Journal of Immunology 01/2015; · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parasite-driven dysfunctional adaptive immunity represents an emerging hypothesis to explain the chronic or persistent nature of parasitic infections, as well as the observation that repeated exposure to most parasitic organisms fails to engender sterilizing immunity. This review discusses recent examples from clinical studies and experimental models of parasitic infection that substantiate the role for immune dysfunction in the inefficient generation and maintenance of potent anti-parasitic immunity. Better understanding of the complex interplay between parasites, host adaptive immunity, and relevant negative regulatory circuits will inform efforts to enhance resistance to chronic parasitic infections through vaccination or immunotherapy.
    Current Immunology Reviews 08/2013; 9(3):179-189.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although we have known for decades that B cells contribute to immune responses by secreting Ab, it is now clear that they are more than simply factories for Ig production, and they also play key roles as modulators of T cell-dependent immunity. Indeed, the evidence showing that Ag-presenting and cytokine-producing B cells can alter the magnitude and quality of CD4 T cell responses continues to grow. In this article, we review the data showing that B cells, working in partnership with dendritic cells, regulate the development of Th2 cells and the subsequent allergic response.
    The Journal of Immunology 08/2014; 193(4):1531-1537. · 5.36 Impact Factor

Preview

Download
0 Downloads
Available from