The size of AB Doradus A from VLTI/AMBER interferometry

Astronomy and Astrophysics (Impact Factor: 4.48). 09/2011; 533. DOI: 10.1051/0004-6361/201117426

ABSTRACT The pre-main sequence (PMS) star AB Dor A is the main component of the quadruple system AB Doradus. The precise determination of the mass and photometry of the close companion to AB Dor A, AB Dor C, has provided an important benchmark for calibration of theoretical evolutionary models of low-mass stars. The limiting factor to the precision of this calibration is the age of the system, as both the mass and luminosity of AB Dor A and C are well monitored by other ongoing programs. In this paper we present VLTI/AMBER observations of AB Dor A which provide a direct measurement of the size of this star, 0.96 ± 0.06 R&sun;. The latter estimate, combined with other fundamental parameters also measured for this star, allows a precise test of PMS evolutionary models using both H-R diagrams and mass-radius relationships. We have found that our radius measurement is larger than that predicted by the models, which we interpret as an evidence of the oversizing produced by the strong magnetic activity of AB Dor A. Considering, at least partially, this magnetic effect, theoretical isochrones have been used to derive constraints to the age of AB Dor A, favouring an age about 40-50 Myr for this system. Older ages are not completely excluded by our data. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 384.C-1053.


Available from: I. Martí-Vidal, Jun 15, 2015
  • Astronomy and Astrophysics 10/2014; 570:A95. DOI:10.1051/0004-6361/201424137 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Young, nearby stars are ideal targets to search for planets using the direct imaging technique. The determination of stellar parameters is crucial for the interpretation of imaging survey results particularly since the luminosity of substellar objects has a strong dependence on system age. We have conducted a large program with NaCo at the VLT in order to search for planets and brown dwarfs in wide orbits around 86 stars. A large fraction of the targets observed with NaCo were poorly investigated in the literature. We performed a study to characterize the fundamental properties (age, distance, mass) of the stars in our sample. To improve target age determinations, we compiled and analyzed a complete set of age diagnostics. We measured spectroscopic parameters and age diagnostics using dedicated observations acquired with FEROS and CORALIE spectrographs at La Silla Observatory. We also made extensive use of archival spectroscopic data and results available in the literature. Additionally, we exploited photometric time-series, available in ASAS and Super-WASP archives, to derive rotation period for a large fraction of our program stars. We provided updated characterization of all the targets observed in the VLT NaCo Large program, a survey designed to probe the occurrence of exoplanets and brown dwarfs in wide orbits. The median distance and age of our program stars are 64 pc and 100 Myr, respectively. Nearly all the stars have masses between 0.70 and 1.50sun, with a median value of 1.01 Msun. The typical metallicity is close to solar, with a dispersion that is smaller than that of samples usually observed in radial velocity surveys. Several stars are confirmed or proposed here to be members of nearby young moving groups. Eight spectroscopic binaries are identified.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 and 5 GHz, respectively. The orbital information derived from these observations was analyzed along with previously reported orbital measurements. We show that the two components of the binary, HD 160934 A and HD 160934 c, display compact radio emission at VLBI scales, providing precise information on the relative orbit. Revised orbital elements were estimated. Future VLBI monitoring of this pair should determine precise model-independent mass estimates for the A and c components, which will serve as calibration tests for PMS evolutionary models.
    Astronomy and Astrophysics 11/2013; 561. DOI:10.1051/0004-6361/201322734 · 4.48 Impact Factor