Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors.

Département de Pharmacologie et Physico-Chimie, UMR 7175, Université Louis Pasteur de Strasbourg, Strasbourg, France.
Journal of cardiovascular pharmacology (Impact Factor: 2.83). 03/2009; 53(3):253-60. DOI: 10.1097/FJC.0b013e31819ccfc9
Source: PubMed

ABSTRACT This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism.
Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells.
WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hawthorn (Crataegus oxyacantha) is a widely used Chinese herb for treatment of gastrointestinal ailments and heart problems and consumed as food. In North America, the role of treatment for heart problems dates back to 1800. Currently, evidence is accumulating from various in vivo and in vitro studies that hawthorn extracts exert a wide range of cardiovascular pharmacological properties, including antioxidant activity, positive inotropic effect, anti-inflammatory effect, anticardiac remodeling effect, antiplatelet aggregation effect, vasodilating effect, endothelial protective effect, reduction of smooth muscle cell migration and proliferation, protective effect against ischemia/reperfusion injury, antiarrhythmic effect, lipid-lowering effect and decrease of arterial blood pressure effect. On the other hand, reviews of placebo-controlled trials have reported both subjective and objective improvement in patients with mild forms of heart failure (NYHA I-III), hypertension, and hyperlipidemia. This paper discussed the underlying pharmacology mechanisms in potential cardioprotective effects and elucidated the clinical applications of Crataegus and its various extracts.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:149363. · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hawthorn extract has been used for heart failure and may decrease cardiac cell injury and improve cardiac function. One proposed mechanism for hawthorn action is vasodilation. We hypothesized that hawthorn extract would increase coronary blood flow in isolated perfused rat hearts. Coronary flow was measured in nonworking perfused rat hearts (Langendorff, constant pressure) using a flow probe; data were collected electronically in real time. Hawthorn extract showed an early (30-120 seconds) vasodilation, followed by a later (3-5 minutes) decrease in coronary flow. Maximum vasodilation occurred with 240 μg/mL hawthorn extract. Hawthorn’s pattern of activity was unlike that of several known vasoactive drugs. Both nitric oxide synthase inhibitors and indomethacin abolished early vasodilation, but they had no effect on the late phase decrease in flow. We suggest that a hawthorn-induced increase in nitric oxide generation leads to an increase in prostacyclin production, thus causing early phase vasodilation.
    Journal of Evidence-Based Complementary & Alternative Medicine. 10/2013; 18(4):257-267.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Negatively charged surfaces of erythrocytes (RBC) reflect properties of the endothelial glycocalyx. Plasma electrolytes counteract these charges and thus control the repulsive forces between RBC and endothelium. Although Na(+) is supposed to exert a rather high affinity to the RBC surface, a direct comparison between Na(+) and K(+) in counteracting the RBC surface has been never made. Therefore, we measured Na(+)/K(+) selectivity of the RBC surface in 20 healthy volunteers applying the previously published salt blood test (SBT). It turned out that the Na(+)/K(+) selectivity ratio of the RBC glycocalyx is on average 6.1 ± 0.39 (ranging from 3 to 9 in different individuals). Considering standard plasma Na(+) and K(+) concentrations, binding probability of Na(+)/K(+) at the RBC surface is about 180:1. The SBT reveals that plasma K(+) counteracts only about 7 % of the negative charges in the RBC glycocalyx. As an in vivo proof of principle, a volunteer's blood was continuously tested over 6 months while applying a glycocalyx protective polyphenol-rich natural compound (hawthorn extract). It turned out that RBC Na(+) sensitivity (the inverse of Na(+) buffer capacity) decreased significantly by about 25 % while Na(+)/K(+) selectivity of the RBC glycocalyx declined only slightly by about 8 %. Taken together, (i) plasma Na(+) selectively buffers the negative charges of the RBC glycocalyx, (ii) the contribution of K(+) in counteracting these negative surface charges is small, and (iii) natural polyphenols applied in vivo increase RBC surface negativity. In conclusion, low plasma Na(+) is supposed to favor frictionless RBC-slipping through blood vessels.
    Pflugers Archiv : European journal of physiology. 07/2014;


Available from
Nov 26, 2014