Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle.

School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea.
Environmental Science and Technology (Impact Factor: 5.48). 03/2009; 43(3):878-83. DOI: 10.1021/es801705f
Source: PubMed

ABSTRACT This study aims to understand the oxidative degradation of organic compounds utilizing zerovalent iron (ZVI) which is further promoted by the presence of natural organic matters (NOMs) (as humic acid (HA) or fulvic acid (FA)) working as electron shuttle mediators. The main target substrate used was 4-chlorophenol. Both HA and FA can mediate the electron transfer from the ZVI surface to O2, while enhancing the production of Fe2+ and H2O2 that subsequently initiates the OH radical-mediated oxidation of organic compoundsthrough Fenton reaction. The electron transfer-mediating role of NOMs was supported by the observation that higher concentrations of H2O2 and ferrous ion were generated in the presence of NOM. The NOM-induced enhancement in oxidation was observed with NOM concentrations ranging 0.1-10 ppm. Since the reactive sites responsible for the electron transfer action are likely to be the quinone moieties of NOMs, benzoquinone that was tested as a proxy of NOM also enhanced the oxidative degradation of 4-chlorophenol in the ZVI suspension. The NOM-mediated oxidation reaction on ZVI was completely inhibited in the presence of methanol, an OH radical scavenger, and in the absence of dissolved oxygen.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sediment caps that degrade contaminants can improve their ability to contain contaminants relative to sand and sorbent-amended caps, but few methods to enhance contaminant degradation in sediment caps are available. The objective of this study was to determine if, carbon electrodes emplaced within a sediment cap at poised potential could create a redox gradient and provide electron donor for the potential degradation of contaminants. In a simulated sediment cap overlying sediment from the Anacostia River (Washington, DC), electrochemically induced redox gradients were developed within 3 days and maintained over the period of the test (∼100 days). Hydrogen and oxygen were produced by water electrolysis at the electrode surfaces and may serve as electron donor and acceptor for contaminant degradation. Electrochemical and geochemical factors that may influence hydrogen production were studied. Hydrogen production displayed zero order kinetics with ∼75% Coulombic efficiency. Rates were proportional to the applied potential between 2.5 and 5 V and not greatly affected by pH. Hydrogen production was promoted by increasing ionic strength and in the presence of natural organic matter. Carbon electrode-stimulated degradation of tetrachlorobenzene in a batch reactor was dependent on applied voltage and production of hydrogen to a concentration above the threshold for biological dechlorination. These findings suggest that electrochemical reactive capping can potentially be used to create "reactive" sediments caps capable of promoting chemical or biological transformations of contaminants within the cap.
    Environmental Science & Technology 09/2010; 44(21):8209-15. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nowadays, endocrine disruptor compounds in the water system have become a concern due to the risk of contamination to wild life and humans even at the nanogram level. Excess estrogens and androgens are a major contributor group of endocrine compounds. Statistical surveys have shown that dairy farms contribute to over 90% of the total estrogens in the UK and US. An analytical system is being developed to assess the efficiency of reactive materials to remove target hormonal contaminants from dairy farm effluent. This can be achieved using reporter gene assays (RGAs) to detect low level steroid hormones. A preliminary study comparing the efficiency of granular activated carbon, zero-valent iron, and organoclay was carried out using bench-scale evaluations in negative control HPLC water. Their potential ability to remove testosterone and 17-β-estradiol spiked at reported environmental levels was measured by androgenic and estrogenic luminescent reporter assay respectively.
    Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on; 07/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to examine the oestrogen and androgen hormone removal efficiency of reactive (Connelly zero-valent iron (ZVI), Gotthart Maier ZVI) and sorptive (AquaSorb 101 granular activated carbon (GAC) and OrganoLoc PM-100 organoclay (OC)) materials from HPLC grade water and constructed wetland system (CWS) treated dairy farm wastewater. Batch test studies were performed and hormone concentration analysis carried out using highly sensitive reporter gene assays (RGAs). The results showed that hormonal interaction with these materials is selective for individual classes of hormones. Connelly ZVI and AquaSorb 101 GAC were more efficient in removing testosterone (Te) than 17β-estradiol (E2) and showed faster removal rates of oestrogen and androgen than the other materials. Gotthart Maier ZVI was more efficient in removing E2 than Te. OrganoLoc PM-100 OC achieved the lowest final concentration of E2 equivalent (EEQ) and provided maximum removal of both oestrogens and androgens.
    Science of The Total Environment 05/2013; 461-462C:1-9. · 3.16 Impact Factor

Full-text (2 Sources)

Available from