Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p.

Département de Biochimie, Université de Montréal, Canada.
Molecular biology of the cell (Impact Factor: 5.98). 03/2009; 20(8):2265-75. DOI: 10.1091/mbc.E08-11-1151
Source: PubMed

ABSTRACT The transport and localization of mRNAs results in the asymmetric synthesis of specific proteins. In yeast, the nucleocytoplasmic shuttling protein She2 binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p-Myo4p complex. Although the cytoplasmic role of She2p in mRNA localization is well characterized, its nuclear function is still unclear. Here, we show that She2p contains a nonclassical nuclear localization signal (NLS) that is essential for its nuclear import via the importin alpha Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS leads to defective ASH1 mRNA localization and Ash1p sorting. Interestingly, these phenotypes mimic knockouts of LOC1 and PUF6, which encode for nuclear RNA-binding proteins that bind the ASH1 mRNA and control its translation. We find that She2p interacts with both Loc1p and Puf6p and that excluding She2p from the nucleus decreases this interaction. Absence of nuclear She2p disrupts the binding of Loc1p and Puf6p to the ASH1 mRNA, suggesting that nuclear import of She2p is necessary to recruit both factors to the ASH1 transcript. This study reveals that a direct coupling between localization and translation regulation factors in the nucleus is required for proper cytoplasmic localization of mRNAs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetric, motor-protein dependent transport of mRNAs and subsequent localized translation is an important mechanism of gene regulation. Due to the high complexity of such motile particles, our mechanistic understanding of mRNA localization is limited. Over the last two decades, ASH1 mRNA localization in budding yeast has served as comparably simple and accessible model system. Recent advances have helped to draw an increasingly clear picture on the molecular mechanisms governing ASH1 mRNA localization from its co-transcriptional birth to its delivery at the site of destination. These new insights help to better understand the requirement of initial nuclear mRNPs, the molecular basis of specific mRNA-cargo recognition via cis-acting RNA elements, the different stages of RNP biogenesis and reorganization, as well as activation of the motile activity upon cargo binding. We discuss these aspects in context of published findings from other model organisms.
    RNA Biology 08/2014; 11(8). DOI:10.4161/rna.29946 · 5.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40–100 nt in length, known as “zipcode.” Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p·She3p het- erotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p·She3p·She2p·zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolu- tion of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aro- matic residues, it likely represents part of She3p’s binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that “hooking” She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode.
    Proceedings of the National Academy of Sciences 12/2014; 112(1). DOI:10.1073/pnas.1423194112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The subcellular localization of RNA molecules is a key step in the control of gene expression that impacts a broad array of biological processes in different organisms and cell types. Like other aspects of posttranscriptional gene regulation discussed in this collection of reviews, the intracellular trafficking of mRNAs is modulated by a complex regulatory code implicating specific cis-regulatory elements, RNA-binding proteins, and cofactors that function combinatorially to dictate precise localization mechanisms. In this review, we first discuss the functional benefits of transcript localization, the regulatory principles involved, and specific molecular mechanisms that have been described for a few well-characterized mRNAs. We also overview some of the emerging genomic and imaging technologies that have provided significant insights into this layer of gene regulation. Finally, we highlight examples of human diseases where defective transcript localization has been documented.
    Advances in Experimental Medicine and Biology 01/2014; 825:57-96. DOI:10.1007/978-1-4939-1221-6_2 · 2.01 Impact Factor


Available from