Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels.

Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2009; 284(16):10980-91. DOI: 10.1074/jbc.M806760200
Source: PubMed

ABSTRACT The entorhinal cortex is closely associated with the consolidation and recall of memories, Alzheimer disease, schizophrenia, and temporal lobe epilepsy. Norepinephrine is a neurotransmitter that plays a significant role in these physiological functions and neurological diseases. Whereas the entorhinal cortex receives profuse noradrenergic innervations from the locus coeruleus of the pons and expresses high densities of adrenergic receptors, the function of norepinephrine in the entorhinal cortex is still elusive. Accordingly, we examined the effects of norepinephrine on neuronal excitability in the entorhinal cortex and explored the underlying cellular and molecular mechanisms. Application of norepinephrine-generated hyperpolarization and decreased the excitability of the neurons in the superficial layers with no effects on neuronal excitability in the deep layers of the entorhinal cortex. Norepinephrine-induced hyperpolarization was mediated by alpha(2A) adrenergic receptors and required the functions of Galpha(i) proteins, adenylyl cyclase, and protein kinase A. Norepinephrine-mediated depression on neuronal excitability was mediated by activation of TREK-2, a type of two-pore domain K(+) channel, and mutation of the protein kinase A phosphorylation site on TREK-2 channels annulled the effects of norepinephrine. Our results indicate a novel action mode in which norepinephrine depresses neuronal excitability in the entorhinal cortex by disinhibiting protein kinase A-mediated tonic inhibition of TREK-2 channels.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bombesin and the bombesin-like peptides including neuromedin B (NMB) and gastrin-releasing peptide (GRP) are important neuromodulators in the brain. We studied their effects on GABAergic transmission and epileptiform activity in the entorhinal cortex (EC). Bath application of bombesin concentration-dependently increased both the frequency and amplitude of sIPSCs recorded from the principal neurons in the EC. Application of NMB and GRP exerted the same effects as bombesin. Bombesin had no effects on mIPSCs recorded in the presence of TTX but slightly depressed the evoked IPSCs. Omission of extracellular Ca(2+) or inclusion of voltage-gated Ca(2+) channel blockers, Cd(2+) and Ni(2+) , blocked bombesin-induced increases in sIPSCs suggesting that bombesin increases GABA release via facilitating extracellular Ca(2+) influx. Bombesin induced membrane depolarization and slightly increased the input resistance of GABAergic interneurons recorded from layer III of the EC. The action potential firing frequency of the interneurons was also increased by bombesin. Bombesin-mediated depolarization of interneurons was unlikely to be mediated by the opening of a cationic conductance but due to the inhibition of inward rectifier K(+) channels. Bath application of bombesin, NMB and GRP depressed the frequency of the epileptiform activity elicited by deprivation of Mg(2+) from the extracellular solution suggesting that bombesin and the bombesin-like peptides have antiepileptic effects in the brain. © 2013 Wiley Periodicals, Inc.
    Hippocampus 08/2013; · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.
    Neuroscience & Biobehavioral Reviews 05/2013; · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although it has not been extensively studied, a significant volume of literature suggests that TREK2 will probably turn out to be an important channel in charge of tuning neuronal transmitter and hormone levels. Thus, pharmacological tools which can manipulate this channel, such as selective agonists are essential both in drug design and to further our understanding of this system. Our investigations have shown that sulfonate ('O') chalcone and sulfonamide ('N') chalcones regulate the TREK2 channel in remarkably different ways: sulfonamide chalcone 5 behaved as an inhibitor with an IC(50) of 62 microM, whereas the sulfonate analogue 11 activated TREK2 with EC(50) value of 167 microM.
    Bioorganic & medicinal chemistry letters 07/2010; 20(14):4237-9. · 2.65 Impact Factor