Article

Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes.

Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan.
Virology (Impact Factor: 3.35). 03/2009; 386(2):407-16. DOI: 10.1016/j.virol.2009.01.039
Source: PubMed

ABSTRACT Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

1 Bookmark
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts.
    BMC Plant Biology 01/2014; 14(1):19. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Over the last two years, considerable advances have been made in common bean (Phaseolus vulgaris L.) genomics, especially with the completion of the genome sequence and the availability of RNAseq data. However, as common bean is recalcitrant to stable genetic transformation, much work remains to be done for the development of functional genomics tools adapted to large-scale studies.ResultsHere we report the successful implementation of an efficient viral vector system for foreign gene expression, virus-induced gene silencing (VIGS) and genetic mapping of a BPMV resistance gene in common bean, using a ¿one-step¿ BPMV vector originally developed in soybean. With the goal of developing this vector for high-throughput VIGS studies in common bean, we optimized the conditions for rub-inoculation of infectious BPMV-derived plasmids in common bean cv. Black Valentine. We then tested the susceptibility to BPMV of six cultivars, and found that only Black Valentine and JaloEEP558 were susceptible to BPMV. We used a BPMV-GFP construct to detect the spatial and temporal infection patterns of BPMV in vegetative and reproductive tissues. VIGS of the PHYTOENE DESATURASE (PvPDS) marker gene was successfully achieved with recombinant BPMV vectors carrying fragments ranging from 132 to 391 bp. Finally, we mapped a gene for resistance to BPMV (R-BPMV) at one end of linkage group 2, in the vicinity of a locus (I locus) previously shown to be involved in virus resistance.Conclusions The ¿one-step¿ BPMV vector system therefore enables rapid and simple functional studies in common bean, and could be suitable for large-scale analyses. In the post-genomic era, these advances are timely for the common bean research community.
    BMC Plant Biology 08/2014; 14(1):232. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play pivotal roles in various biological processes across kingdoms. Many plant miRNAs have been experimentally identified or predicted by bioinformatics mining of small RNA databases. However, functions of these miRNAs remain largely unknown due to the lack of effective genetic tools. Here, we report a virus-based miRNA silencing (VbMS) system that can be used for functional analysis of plant miRNAs. VbMS is performed through Tobacco rattle virus (TRV)-based expression of miRNA target mimics to silence endogenous miRNAs. VbMS of either miR172 or miR165/166 caused developmental defects in Nicotiana benthamiana. VbMS of miR319 reduced the complexity of tomato compound leaves. These results demonstrate that TRV-based VbMS is a powerful tool to silence endogenous miRNAs and to dissect their functions in different plant species.
    Plant physiology 12/2013; · 6.56 Impact Factor

Full-text (2 Sources)

View
15 Downloads
Available from
May 20, 2014