PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and α-Synuclein Aggregation in Cell Culture Models of Parkinson's Disease

Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, USA.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(2):e4597. DOI: 10.1371/journal.pone.0004597
Source: PubMed

ABSTRACT Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased alpha-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and alpha-synclein aggregation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is frequent at old age, leading to atrophy of specific neurons and to early death. Lifespan and healthy aging of organisms depend on growth factor/nutrient signaling and on bioenergetics via mitochondria, all of which regulate downstream nuclear functions through FOXO and SIR proteins. Mammalian SIRtuins include the mitochondrial deacetylase SIRT3, and recently mitochondrial lysine acetylation (AcLys) was found to initiate mitochondrial degradation by autophagy. This mitophagy process is closely regulated by PINK1 and Parkin, two interacting proteins which relocalize to mitochondria with deficient proton gradients, and whose mutations cause autosomal recessive variants of PD. Strong generalized deacetylation of mitochondrial proteins and altered SIRT3 levels occur in rodent models of PD before the onset of toxic aggregate formation. We propose that the development of site-specific AcLys-antibodies and their characterization in patients will have medical value.
    Progress in molecular biology and translational science 01/2014; 127C:155-182. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The studies presented in this review attempt to describe the operative properties of the genes involved in generation of early and late onset of Parkinson's disease or Parkinson-like disorders and how mutation in these genes relate to onset of manganism. These include the genes α-synuclein, parkin, PINK1, DJ-1, ATP13A2, and SLC30A10 which are associated with early-onset of Parkinson's as well as those genes linked with late onset of the disorder which include, LRRK2 and VPS35. Since mutations in these genes and excess Mn potentially disrupt similar cellular processes within the basal ganglia, it is reasonable to hypothesize that the expressed symptoms of Parkinson's disease may overlap with that of manganese (Mn) toxicity. There appears to be four common processes linking the two disorders, as mutations in genes associated with Parkinsonism initiate similar adverse biological reactions acknowledged to stimulate Mn-induced dopaminergic cell death including; 1) disruption of mitochondrial function leading to oxidative stress, 2) abnormalities in vesicle processing, 3) altered proteasomal and lysosomal protein degradation, and 4) α-synuclein aggregation The mutual neurotoxic processes provoked by mutations in these genes in concert with the biological disturbances produced by Mn, most likely, act in synchrony to contribute to the severity, characteristics and onset of both disorders.
    NeuroToxicology 08/2014; · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss-of-function mutations in the PINK1 gene lead to recessive forms of Parkinson's disease. Animal models with depleted PINK1 expression have failed to reproduce significant nigral dopaminergic neurodegeneration and clear alpha-synuclein pathology, main characteristics of the disease. In this study, we investigated whether alpha-synuclein pathology is altered in the absence of PINK1 in cell culture and in vivo. We observed that downregulation of PINK1 enhanced alpha-synuclein aggregation and apoptosis in a neuronal cell culture model for synucleinopathy. Silencing of PINK1 expression in mouse substantia nigra using recombinant adeno-associated viral vectors did not induce dopaminergic neurodegeneration in a long-term study up to 10 months, nor did it enhance or accelerate dopaminergic neurodegeneration after alpha-synuclein overexpression. However, in PINK1 knockout mice, overexpression of alpha-synuclein in the substantia nigra resulted in enhanced dopaminergic neurodegeneration as well as significantly higher levels of alpha-synuclein phosphorylation at serine 129 at 4 weeks postinjection. In conclusion, our results demonstrate that total loss of PINK1 leads to an increased sensitivity to alpha-synuclein-induced neuropathology and cell death in vivo.
    Neurobiology of Aging 06/2014; · 4.85 Impact Factor

Full-text (4 Sources)

Available from
May 15, 2014