Article

Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice.

Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52240, USA.
Molecular Therapy (Impact Factor: 6.43). 03/2009; 17(6):1053-63. DOI: 10.1038/mt.2009.17
Source: PubMed

ABSTRACT Huntington's disease (HD) is a fatal neurodegenerative disease caused by mutant huntingtin (htt) protein, and there are currently no effective treatments. Recently, we and others demonstrated that silencing mutant htt via RNA interference (RNAi) provides therapeutic benefit in HD mice. We have since found that silencing wild-type htt in adult mouse striatum is tolerated for at least 4 months. However, given the role of htt in various cellular processes, it remains unknown whether nonallele-specific silencing of both wild-type and mutant htt is a viable therapeutic strategy for HD. Here, we tested whether cosilencing wild-type and mutant htt provides therapeutic benefit and is tolerable in HD mice. After treatment, HD mice showed significant reductions in wild-type and mutant htt, and demonstrated improved motor coordination and survival. We performed transcriptional profiling to evaluate the effects of reducing wild-type htt in adult mouse striatum. We identified gene expression changes that are concordant with previously described roles for htt in various cellular processes. Also, several abnormally expressed transcripts associated with early-stage HD were differentially expressed in our studies, but intriguingly, those involved in neuronal function changed in opposing directions. Together, these encouraging and surprising findings support further testing of nonallele-specific RNAi therapeutics for HD.

0 Followers
 · 
100 Views
  • Aktuelle Neurologie 09/2013; 40(07):377-392. DOI:10.1055/s-0033-1345194 · 0.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inappropriate activation of cyclin-dependent kinase 5 (CDK5) resulting from proteolytic release of the activator fragment p25 from the membrane contributes to the formation of neurofibrillary tangles, β-amyloid (βA) aggregation, and chronic neurodegeneration. At 18 months of age, 3× Tg-AD mice were sacrificed after either 3 weeks (short term) or 1 year (long term) of CDK5 knockdown. In short-term-treated animals, CDK5 knockdown reversed βA aggregation in the hippocampi via inhibitory phosphorylation of glycogen synthase kinase 3β Ser9 and activation of phosphatase PP2A. In long-term-treated animals, CDK5 knockdown induced a persistent reduction in CDK5 and prevented βA aggregation, but the effect on amyloid precursor protein processing was reduced, suggesting that yearly booster therapy would be required. These findings further validate CDK5 as a target for preventing or blocking amyloidosis in older transgenic mice. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 02/2015; DOI:10.1002/jnr.23576 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    Revue Neurologique 11/2014; DOI:10.1016/j.neurol.2014.09.004 · 0.60 Impact Factor

Similar Publications