Article

Plasma carnitine ester profile in homozygous and heterozygous OCTN2 deficiency.

Department of Medical Genetics and Child Development, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary.
Journal of Inherited Metabolic Disease (Impact Factor: 4.07). 03/2009; DOI: 10.1007/s10545-009-0926-1
Source: PubMed

ABSTRACT The carnitine ester spectrum was studied using ESI tandem mass spectrometry in a 2.5-year-old male Roma child with homozygous deletion of 844C of the SLC22A5 gene, presenting with hepatopathy and cardiomyopathy. Besides the dramatic decrease of plasma free carnitine (1.38 vs 32.7 mumol/L in controls) all plasma carnitine esters were severely decreased in the proband: the total esters were 31.4% of the controls. In three heterozygous siblings the free carnitine level was 62.3% of the normal controls, while the levels of the individual carnitine esters ranged between 15.5% and 163% (average 70.9%). The heterozygous parents exhibited the same pattern. The proband was supplemented with 50 mg/kg per day of L: -carnitine oral solution. After 2 months of treatment, his hepatomegaly, elevated transaminases and the pathological cardiac ultrasound parameters normalized. The plasma free carnitine rose to 12.8 mumol/L (39% of the controls). All of the carnitine esters also increased; however, the individual esters were still 8.5-169.7% of the controls (average 55.5%). After 13 months of treatment there was a further increase in free carnitine (15.9 mumol/L) as well as in the level of the individual esters, ranging between 16.1% and 140.3% of the controls (average 66.9%). The data presented here show that, besides the dramatic decrease of free carnitine, the carnitine ester metabolism is also affected in OCTN2 deficiency; the replenishment of the pools under treatment is slow. Despite an impressive clinical improvement, the carnitine metabolism can be still seriously affected.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The prevalence of primary carnitine deficiency (PCD) in the Faroe Islands is the highest reported in the world (1:300). Serious symptoms related to PCD, e.g. sudden death, have previously only been associated to the c.95A > G/c.95A > G genotype in the Faroe Islands. We report and characterize novel mutations associated with PCD in the Faroese population and report and compare free carnitine levels and OCTN2 transport activities measured in fibroblasts from PCD patients with different genotypes. Methods Genetic analyses were used to identify novel mutations, and carnitine uptake analyses in cultured skin fibroblasts from selected patients were used to examine residual OCTN2 transporter activities of the various genotypes. Results Four different mutations, including the unpublished c.131C > T (p.A44V), the novel splice mutation c.825-52G > A and a novel risk-haplotype (RH) were identified in the Faroese population. The two most prevalent genotypes were c.95A > G/RH (1:600) and c.95A > G/c.95A > G (1:1300). Patients homozygous for the c.95A > G mutation had both the significantly (p < 0.01) lowest mean free carnitine level at 2.03 (SD 0.66) μmol/L and lowest residual OCTN2 transporter activity (4% of normal). There was a significant positive correlation between free carnitine levels and residual OCTN2 transporter activities in PCD patients (R2 = 0.430, p < 0.01). Conclusion There was a significant positive correlation between carnitine levels and OCTN2 transporter activities. The c.95A > G/c.95A > G genotype had the significantly lowest mean free carnitine level and residual OCTN2 transporter activity.
    Molecular Genetics and Metabolism Reports. 01/2014; 1:241–248.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary systemic carnitine deficiency (SCD) is an autosomal recessive disorder caused by defective cellular carnitine transport. Patients usually present with predominant metabolic or cardiac manifestations. SCD is caused by mutations in the organic cation/carnitine transporter OCTN2 (SLC22A5) gene. Mutation analysis of SLC22A5 gene was carried out in eight Turkish patients from six families. Six patients presented with signs and symptoms of heart failure, cardiomyopathy, and low plasma carnitine levels, five of them with concurrent anemia. A patient with dilated cardiomyopathy had also facial dysmorphia, microcephaly, and developmental delay. Tandem MS analyses in siblings of the patients revealed two more cases with low plasma carnitine levels. SCD diagnosis was confirmed in these two cases by mutation screening. These two cases were asymptomatic but echocardiography revealed left ventricular dilatation in one of them. Carnitine treatment was started before the systemic signs and symptoms developed in these patients. Mean value of serum carnitine levels of the patients was 2.63±1.92μmol/L at the time of diagnosis. After 1year of treatment, carnitine values increased to 16.62±5.11 (p<0.001) and all responded to carnitine supplementation clinically. Mutation screening of the OCTN2 gene study in the patients revealed two novel (p.G411V, p.G152R), and four previously identified mutations (p.R254X, p.R282X, p.R289X, p.T337Pfs12X). Early recognition and carnitine supplementation can be lifesaving in this inborn error of fatty acid oxidation.
    JIMD reports. 01/2012; 3:17-23.