Article

Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones.

Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA.
Microbial Ecology (Impact Factor: 3.12). 03/2009; 58(2):350-62. DOI: 10.1007/s00248-009-9487-y
Source: PubMed

ABSTRACT Denitrification in the ocean is a major sink for fixed nitrogen in the global N budget, but the process is geographically restricted to a few oceanic regions, including three oceanic oxygen minimum zones (OMZ) and hemipelagic sediments worldwide. Here, we describe the diversity and community composition of microbes responsible for denitrification in the OMZ using polymerase chain reaction, sequence and fragment analysis of clone libraries of the signature genes (nirK and nirS) that encode the enzyme nitrite reductase, responsible for key denitrification transformation steps. We show that denitrifying assemblages vary in space and time and exhibit striking changes in diversity associated with the progression of denitrification from initial anoxia through nitrate depletion. The initial denitrifying assemblage is highly diverse, but succession on the scale of 3-12 days leads to a much less diverse assemblage and dominance by one or a few phylotypes. This progression occurs in the natural environment as well as in enclosed incubations. The emergence of dominants from a vast reservoir of rare types has implications for the maintenance of diversity of the microbial population and suggests that a small number of microbial dominants may be responsible for the greatest rates of transformations involving nitrous oxide and global fixed nitrogen loss. Denitrifying blooms, driven by a few types responding to episodic environmental changes and distributed unevenly in time and space, are consistent with the sampling effect model of diversity-function relationships. Canonical denitrification thus appears to have important parallels with both primary production and nitrogen fixation, which are typically dominated by regionally and temporally restricted blooms that account for a disproportionate share of these processes worldwide.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The organization of denitrifying microorganisms in oil-polluted bioturbated sediments was investigated in mesocosms under conditions as closer as possible to that observed in the environment. Molecular and culture-dependent approaches revealed that denitrifying Gammaproteobacteria were abundant in oil-polluted and bioturbated sediments suggesting that they may play a key role in hydrocarbon degradation in the environment. T-RFLP and gene libraries analyses targeting nirS gene showed that denitrifying microbial communities structure was slightly affected by either the addition of Hediste diversicolor or crude oil revealing the metabolic versatility of denitrifying microorganisms. From oil-polluted sediments, distinct denitrifying hydrocarbonoclastic bacterial consortia were obtained by enrichment cultures on high molecular weight PAHs (dibenzothiophene, fluoranthene, pyrene and chrysene) under nitrate-reducing conditions. Interestingly, molecular characterization of the consortia showed that the denitrifying communities obtained from oiled microcosms with addition of H. diversicolor were different to that observed without H. diversicolor addition, especially with fluoranthene and chrysene revealing the bacterial diversity involved in the degradation of these PAHs. This article is protected by copyright. All rights reserved.
    FEMS Microbiology Ecology 05/2014; · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gradients in abiotic parameters, such as soil moisture, can strongly influence microbial community structure and function. Denitrifying and ammonia-oxidizing microorganisms, in particular, have contrasting physiological responses to abiotic factors such as oxygen concentration and soil moisture. Identifying abiotic factors that govern the composition and activity of denitrifying and ammonia-oxidizing communities is critical for understanding the nitrogen cycle. The objectives of this study were to (i) examine denitrifier and archaeal ammonia oxidizer community composition and (ii) assess the taxa occurring within each functional group related to soil conditions along an environmental gradient. Soil was sampled across four transects at four locations along a dry to saturated environmental gradient at a restored wetland. Soil pH and soil organic matter content increased from dry to saturated plots. Composition of soil denitrifier and ammonia oxidizer functional groups was assessed by terminal restriction fragment length polymorphism (T-RFLP) community analysis, and local soil factors were also characterized. Microbial community composition of denitrifiers and ammonia oxidizers differed along the moisture gradient (denitrifier: ANOSIM R = 0.739, P < 0.001; ammonia oxidizers: ANOSIM R = 0.760, P < 0.001). Individual denitrifier taxa were observed over a larger range of moisture levels than individual archaeal ammonia oxidizer taxa (Wilcoxon rank sum, W = 2413, P value = 0.0002). Together, our data suggest that variation in environmental tolerance of microbial taxa have potential to influence nitrogen cycling in terrestrial ecosystems.
    Microbial Ecology 03/2014; 68(2). · 3.12 Impact Factor
  • Source

Full-text (3 Sources)

Download
54 Downloads
Available from
May 15, 2014