Article

Cell cycle, CDKs and cancer: a changing paradigm

Cell Division and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain.
Nature Reviews Cancer (Impact Factor: 29.54). 04/2009; 9(3):153-66. DOI: 10.1038/nrc2602
Source: PubMed

ABSTRACT Tumour-associated cell cycle defects are often mediated by alterations in cyclin-dependent kinase (CDK) activity. Misregulated CDKs induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, mammalian CDKs are essential for driving each cell cycle phase, so therapeutic strategies that block CDK activity are unlikely to selectively target tumour cells. However, recent genetic evidence has revealed that, whereas CDK1 is required for the cell cycle, interphase CDKs are only essential for proliferation of specialized cells. Emerging evidence suggests that tumour cells may also require specific interphase CDKs for proliferation. Thus, selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.

1 Follower
 · 
322 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cilia and flagella are dynamic organelles that undergo assembly and disassembly during each cell cycle. They are structurally polarized, and the mechanisms by which these organelles are disassembled are incompletely understood. Here, we show that flagellar resorption occurs in two distinct phases of length-dependent regulation. A CDK-like kinase, encoded by flagellar shortening 1 (FLS1), is required for the normal rate of disassembly of only the distal part of the flagellum. Mechanistically, loss of function of FLS1 prevents the initial phosphorylation of CALK, an aurora-like kinase that regulates flagellar shortening, and induces the earlier onset of the inhibitory phosphorylation of CrKinesin13, a microtubule depolymerase, which is involved in flagellar shortening. In addition, CALK and CrKinesin13 phosphorylation can also be induced by the process of flagellar shortening itself, demonstrating an example of cilia-generated signaling not requiring the binding of a ligand or the stimulation of an ion channel. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 19. DOI:10.1016/j.celrep.2015.02.044 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.
    Nature Communications 01/2015; 6:5906. DOI:10.1038/ncomms6906 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic pre-B cell leukemia transcription factor (PBX)-interacting protein (HPIP) was shown to play a role in cancer development and progression. However, the role of HPIP in colorectal cancer (CRC) is unknown. Here, we report that HPIP is overexpressed in most of CRC patients and predicts poor clinical outcome in CRC. HPIP promotes CRC cell proliferation via activation of G1/S and G2/M checkpoint transitions, concomitant with a marked increase of the positive cell cycle regulators, including cyclin D1, cyclin A, and cyclin B1. HPIP inhibits CRC cell apoptosis accompanied by the decreased levels of BAX and PIG3, the inducers of apoptosis, and the increased level of the apoptosis inhibitor BCL2. HPIP blocks caspase-3-mediated cleavage of PARP, an important apoptosis marker. HPIP promotes CRC cell migration and invasion, and regulates epithelial-mesenchymal transition (EMT), which plays a critical role in cancer cell migration and invasion. Activation of MAPK/ERK1/2 and PI3k/AKT pathways is required for HPIP modulation of CRC cell proliferation, migration and EMT. Moreover, HPIP knockdown suppresses colorectal tumor growth in nude mice. These data highlight the important role of HPIP in CRC cell proliferation and progression and suggest that HPIP may be a useful target for CRC therapy.
    Scientific Reports 03/2015; 5:9429. DOI:10.1038/srep09429 · 5.08 Impact Factor

Full-text (2 Sources)

Download
4,444 Downloads
Available from
Jun 6, 2014