Article

Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription.

Neurodegenerative Disease Research Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2009; 106(10):3907-12. DOI: 10.1073/pnas.0807991106
Source: PubMed

ABSTRACT Epidemiological, clinical and experimental evidence suggests a link between type 2 diabetes and Alzheimer's disease (AD). Insulin modulates metabolism of beta-amyloid precursor protein (APP) in neurons, decreasing the intracellular accumulation of beta-amyloid (Abeta) peptides, which are pivotal in AD pathogenesis. The present study investigates whether the widely prescribed insulin-sensitizing drug, metformin (Glucophage(R)), affects APP metabolism and Abeta generation in various cell models. We demonstrate that metformin, at doses that lead to activation of the AMP-activated protein kinase (AMPK), significantly increases the generation of both intracellular and extracellular Abeta species. Furthermore, the effect of metformin on Abeta generation is mediated by transcriptional up-regulation of beta-secretase (BACE1), which results in an elevated protein level and increased enzymatic activity. Unlike insulin, metformin exerts no effect on Abeta degradation. In addition, we found that glucose deprivation and various tyrphostins, known inhibitors of insulin-like growth factors/insulin receptor tyrosine kinases, do not modulate the effect of metformin on Abeta. Finally, inhibition of AMP-activated protein kinase (AMPK) by the pharmacological inhibitor Compound C largely suppresses metformin's effect on Abeta generation and BACE1 transcription, suggesting an AMPK-dependent mechanism. Although insulin and metformin display opposing effects on Abeta generation, in combined use, metformin enhances insulin's effect in reducing Abeta levels. Our findings suggest a potentially harmful consequence of this widely prescribed antidiabetic drug when used as a monotherapy in elderly diabetic patients.

Full-text

Available from: Laura Gasparini, Jun 08, 2015
0 Followers
 · 
210 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical and experimental biomedical studies have shown Type 2 diabetes mellitus (T2DM) to be a risk factor for the development of Alzheimer's disease (AD). This study demonstrates the effect of metformin, a therapeutic biguanide administered for T2DM therapy, on β-amyloid precursor protein (APP) metabolism in in vitro, ex vivo and in vivo models. Furthermore, the protective role of insulin against metformin is also demonstrated. In LAN5 neuroblastoma cells, metformin increases APP and presenilin levels, proteins involved in AD. Overexpression of APP and presenilin 1 (Pres 1) increases APP cleavage and intracellular accumulation of β-amyloid peptide (Aβ), which, in turn, promotes aggregation of Aβ. In the experimental conditions utilized the drug causes oxidative stress, mitochondrial damage, decrease of Hexokinase-II levels and cytochrome C release, all of which lead to cell death. Several changes in oxidative stress-related genes following metformin treatment were detected by PCR arrays specific for the oxidative stress pathway. These effects of metformin were found to be antagonized by the addition of insulin, which reduced Aβ levels, oxidative stress, mitochondrial dysfunction and cell death. Similarly, antioxidant molecules, such as ferulic acid and curcumin, are able to revert metformin's effect. Comparable results were obtained using peripheral blood mononuclear cells. Finally, the involvement of NF-κB transcription factor in regulating APP and Pres 1 expression was investigated. Upon metformin treatment, NF-κB is activated and translocates from the cytoplasm to the nucleus, where it induces increased APP and Pres 1 transcription. The use of Bay11-7085 inhibitor suppressed the effect of metformin on APP and Pres 1 expression. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 02/2015; 1853(5). DOI:10.1016/j.bbamcr.2015.01.017 · 5.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common cause of dementia and represents one of the highest unmet needs in medicine today. Drug development efforts for AD have been encumbered by largely unsuccessful clinical trials in the last decade. Drug repositioning, a process of discovering a new therapeutic use for existing drugs or drug candidates, is an attractive and timely drug development strategy especially for AD. Compared with traditional de novo drug development, time and cost are reduced as the safety and pharmacokinetic properties of most repositioning candidates have already been determined. A majority of drug repositioning efforts for AD have been based on positive clinical or epidemiological observations or in vivo efficacy found in mouse models of AD. More systematic, multidisciplinary approaches will further facilitate drug repositioning for AD. Some experimental approaches include unbiased phenotypic screening using the library of available drug collections in physiologically relevant model systems (e.g. stem cell-derived neurons or glial cells), computational prediction and selection approaches that leverage the accumulating data resulting from RNA expression profiles, and genome-wide association studies. This review will summarize several notable strategies and representative examples of drug repositioning for AD.
    Journal of the American Society for Experimental NeuroTherapeutics 12/2014; 12(1). DOI:10.1007/s13311-014-0325-7 · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study the effects of diet on disease progression and activity levels of adenosine monophosphate-activated protein kinase (AMPK), and its downstream targets, in an amyotrophic lateral sclerosis (ALS) animal model. AMPK activity was measured in cerebral cortex, spinal cord, cerebellum and hindlimb muscle tissue using immunohistochemistry in transgenic mice overexpressing human superoxide dismutase-1 (SOD1(G93A)) fed a high-fat (HFD), standard ad libitum (AL) or calorie-restricted (CR) diet; AMPK activity was also measured in wild-type (SOD1(WT)) mice. Activity of AMPK and phospho-AMPK, acetyl coenzyme-A carboxylase (ACC), phospho-ACC and heat shock protein-70 (Hsp70) were also measured using Western blot. Food intake and grip strength were recorded; body composition was analysed using dual energy X-ray absorptiometry. Motor neuron survival was observed using Nissl staining. AMPK activity increased and Hsp70 expression decreased in AL SOD1(G93A) mice compared with SOD1(WT) mice in spinal cord and hindlimb muscle. Compared with AL SOD1(G93A) mice, CR SOD1(G93A) mice showed increased AMPK activity, downregulated Hsp70 expression, reduced motor neuron survival in spinal cord and hindlimb muscle and reduced lifespan; HFD SOD1(G93A) mice showed opposite effects. In this mouse model, increased AMPK activity seems to play a negative role in motor neuron survival, possibly through a novel mechanism involving Hsp70 downregulation. These changes can be modified by diet. Inhibition of AMPK may provide a therapeutic strategy for ALS. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
    The Journal of international medical research 12/2014; 43(1). DOI:10.1177/0300060514554725 · 1.10 Impact Factor