Article

Structure and promoter characterization of aldo-keto reductase family 1 B10 gene.

Department of Medical Microbiology, Immunology, and Cell Biology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62702, USA.
Gene (Impact Factor: 2.2). 03/2009; 437(1-2):39-44. DOI: 10.1016/j.gene.2009.02.007
Source: PubMed

ABSTRACT Aldo-keto reductase family 1 member B10 (AKR1B10) is overexpressed in human hepatocellular carcinoma, lung squamous carcinoma, and lung adenocarcinoma in smokers. Our recent studies have showed that AKR1B10 plays a critical role in the growth and proliferation of cancer cells by detoxifying reactive carbonyls and regulating fatty acid biosynthesis. However, little is known about the regulatory mechanisms of AKR1B10 expression. In this study, we determined the structure of AKR1B10 gene and characterized its promoter. The results demonstrated that AKR1B10 consists of 10 exons and 9 introns, stretching approximately 13.8 kb. A 5'-RACE study determined the transcriptional start site of AKR1B10 at 320 bp upstream of the ATG translational start codon. A TATA-like (TAATAA) and a CAAT box are present from -145 to -140 bp and -193 to -190 bp upstream of the transcriptional start site, respectively. Motif analysis recognized multiple putative oncogenic and tumor suppressor protein binding sites in the AKR1B10 promoter, including c-Ets-1, C/EBP, AP-1, and p53, but osmolytic response elements were not found. A -4091 bp of the 5'-flanking fragment of the AKR1B10 gene was capable of driving GFP and luciferase reporter gene expression in HepG2 cells derived from human hepatocellular carcinoma; progressive 5'-deletions revealed that a -255 bp fragment possesses full promoter activity.

0 Bookmarks
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and Objectives The aim of the study was to investigate the correlation between AKR1B10 expression and clinicopathological features of gastric cancer (GC). Methods Real-time polymerase chain reaction (RT-PCR) was performed to determine AKR1B10 mRNA expression. AKR1B10 protein levels were measured by immunohistochemistry. Results RT-PCR analysis confirmed that AKR1B10 was significantly down-regulated in gastric cancer compared with paired, normal mucosa. Immunohistochemistry revealed that the percentage of AKR1B10-positive specimens was lower in gastric carcinoma compared with normal specimens. The frequency of AKR1B10-positive GC specimens was higher in patients with tumor size < 5 cm, no lymph node metastasis, no distant metastasis and lower tumor stages The mean survival time for patients in the AKR1B10-positive group was significantly higher compared with the AKR1B1-negative group. The 5-year survival rate for the AKR1B10-positive group was also significantly higher than for the AKR1B1-negative group. Cox regression analysis revealed that AKR1B10 expression is an independent prognostic factor of GC. Conclusions Expression of AKR1B10 in gastric cancer was significantly associated with tumor size, lymph node metastasis, distance metastasis and TNM stage, and AKR1B10 may be a good prognostic indicator in gastric cancer.
    European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 01/2013; · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upregulation of aldo-keto reductase 1B10 (AKR1B10) through the mitogenic activator protein-1 signaling pathway might promote hepatocarcinogenesis and tumor progression. The goal of this study was to evaluate the prognostic significance of AKR1B10 protein expression in patients with hepatocellular carcinoma after surgery.
    Gut and liver 10/2014; · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.
    Acta Crystallographica Section D Biological Crystallography 03/2014; 70(Pt 3):889-903. · 7.23 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
Aug 27, 2014