Linking binge alcohol-induced neurodamage to brain edema and potential aquaporin-4 upregulation: evidence in rat organotypic brain slice cultures and in vivo.

CoMentis Inc., Oklahoma City, Oklahoma, USA.
Journal of neurotrauma (Impact Factor: 4.25). 03/2009; 26(2):261-73. DOI: 10.1089/neu.2008.0682
Source: PubMed

ABSTRACT Brain edema and derived oxidative stress potentially are critical events in the hippocampal-entorhinal cortical (HEC) neurodegeneration caused by binge alcohol (ethanol) intoxication and withdrawal in adult rats. Edema's role is based on findings that furosemide diuretic antagonizes binge alcohol-dependent brain overhydration and neurodamage in vivo and in rat organotypic HEC slice cultures. However, evidence that furosemide has significant antioxidant potential and knowledge that alcohol can cause oxidative stress through non-edemic pathways has placed edema's role in question. We therefore studied three other diuretics and a related non-diuretic that, according to our oxygen radical antioxidant capacity (ORAC) assays or the literature, possess minimal antioxidant potential. Acetazolamide (ATZ), a carbonic anhydrase inhibitor/diuretic with negligible ORAC effectiveness and, interestingly, an aquaporin-4 (AQP4) water channel inhibitor, prevented alcohol-dependent tissue edema and neurodegeneration in HEC slice cultures. Likewise, in binge alcohol-intoxicated rats, ATZ suppressed brain edema while inhibiting neurodegeneration. Torasemide, a loop diuretic lacking furosemide's ORAC capability, also prevented alcohol-induced neurodamage in HEC slice cultures. However, bumetanide (BUM), a diuretic blocker of Na(+)-K(+)-2Cl(-) channels, and L-644, 711, a nondiuretic anion channel inhibitor--both lacking antioxidant capabilities as well as reportedly ineffective against alcohol-dependent brain damage in vivo--reduced neither alcohol-induced neurotoxicity nor (with BUM) edema in HEC slices. Because an AQP4 blocker (ATZ) was neuroprotective, AQP4 expression in the HEC slices was examined and found to be elevated by binge alcohol. The results further indicate that binge ethanol-induced brain edema/swelling, potentially associated with AQP4 upregulation, may be important in consequent neurodegeneration that could derive from neuroinflammatory processes, for example, membrane arachidonic acid mobilization and associated oxidative stress.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼9 g/kg/d, achieving blood ethanol levels ∼375 mg/dl; "Majchrowicz" model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model-hippocampus, entorhinal cortex, and olfactory bulb-but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain "oxidative stress footprints" (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼60 d) were ethanol-binged (100 mM or ∼450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models support involvement of AQP4- and PLA2-associated neuroinflammatory pro-oxidative pathways in the neurodamage, with potential regulation by PARP-1 as well. Furthermore, DHA emerges as an effective inhibitor of these binge ethanol-dependent neuroinflammatory pathways as well as associated neurodegeneration in adult-age brain.
    PLoS ONE 07/2014; 9(7):e101223. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic alcohol (ethanol) abuse causes neuroinflammation and brain damage that can give rise to alcoholic dementia. Insightfully, Dr. Albert Sun was an early proponent of oxidative stress as a key factor in alcoholism-related brain deterioration. In fact, oxidative stress has proven to be critical to the hippocampal and temporal cortical neurodamage resulting from repetitive "binge" alcohol exposure in adult rat models. Although the underlying mechanisms are uncertain, our immunoelectrophoretic and related assays in binge alcohol experiments in vivo (adult male rats) and in vitro (rat organotypic hippocampal-entorhinal cortical slice cultures) have implicated phospholipase A2 (PLA2)-activated neuroinflammatory pathways, release of pro-oxidative arachidonic acid (20:4 ω6), and elevated oxidative stress adducts (i.e., 4-hydroxynonenal-protein adducts). Also, significantly increased by the binge alcohol treatments was aquaporin-4 (AQP4), a water channel enriched in astrocytes that, when augmented, may trigger brain (esp. cellular) edema and neuroinflammation; of relevance, glial swelling is known to provoke increased PLA2 activities or levels. Concomitant with PLA2 activation, the results have further implicated binge alcohol-elevated poly (ADP-ribose) polymerase-1 (PARP-1), an oxidative stress-responsive DNA repair enzyme linked to parthanatos, a necrotic-like neuronal death process. Importantly, supplementation of the brain slice cultures with docosahexaenoic acid (22:6 ω3) exerted potent suppression of the induced changes in PLA2 isoforms, AQP4, PARP-1 and oxidative stress footprints, and prevention of the binge alcohol neurotoxicity, by as yet unknown mechanisms. These neuroinflammatory findings from our binge alcohol studies and supportive rat binge studies in the literature are reviewed.
    Molecular Neurobiology 04/2014; · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol abuse can result in significant alterations to the structure of the brain and ultimately to behavioral dysfunctions. Epidemiological studies have shown that alcoholism is closely associated with impaired memory and judgment. However, the degree of deficit (brain injury) depends on factors such as the age of onset, duration of heavy drinking, continuous versus periodic (binge) drinking and the typical amount consumed per session. In recent years, neuroinflammation has been proposed as one of the alcoholism-induced neuropathological mechanisms, since increased levels of microglial markers are observed in the brains of both post-mortem human alcoholics and various alcohol-treated animals, from new-born or adolescent rodents to adult rodents. Many studies have investigated how microglia modulate alcohol-induced behavioral changes such as cognitive deficits, abnormal locomotor activity, motor impairment and mood disturbance. Importantly, we try to characterize and compare the distinct features in different ethanol (EtOH)-induced neurodegenerative disease (NDD) models. Moreover, mounting evidence indicates that in response to certain environmental toxins, microglia can become over-activated under oxidative stress, releasing pro-inflammatory mediators that cause central nervous system (CNS) disease. The molecular mechanisms involve free radical formation and the release of pro-inflammatory cytokines that are detrimental to neighboring neurons and interfere with the molecules regulating cell-cell interactions. The identification and understanding of the cellular and molecular mechanisms of microglial activation are described, as well as multiple downstream targets, in different alcohol-treated animal models. This review might contribute to the development of treatments and/or therapeutic agents that can reduce or eliminate the deleterious effects of alcohol-induced NDD.
    Pharmacology [?] Therapeutics 07/2014; · 7.75 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014