Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells

Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore 117597.
ACS Nano (Impact Factor: 12.03). 03/2009; 3(2):279-90. DOI: 10.1021/nn800596w
Source: PubMed

ABSTRACT Silver nanoparticles (Ag-np) are being used increasingly in wound dressings, catheters, and various household products due to their antimicrobial activity. The toxicity of starch-coated silver nanoparticles was studied using normal human lung fibroblast cells (IMR-90) and human glioblastoma cells (U251). The toxicity was evaluated using changes in cell morphology, cell viability, metabolic activity, and oxidative stress. Ag-np reduced ATP content of the cell caused damage to mitochondria and increased production of reactive oxygen species (ROS) in a dose-dependent manner. DNA damage, as measured by single cell gel electrophoresis (SCGE) and cytokinesis blocked micronucleus assay (CBMN), was also dose-dependent and more prominent in the cancer cells. The nanoparticle treatment caused cell cycle arrest in G(2)/M phase possibly due to repair of damaged DNA. Annexin-V propidium iodide (PI) staining showed no massive apoptosis or necrosis. The transmission electron microscopic (TEM) analysis indicated the presence of Ag-np inside the mitochondria and nucleus, implicating their direct involvement in the mitochondrial toxicity and DNA damage. A possible mechanism of toxicity is proposed which involves disruption of the mitochondrial respiratory chain by Ag-np leading to production of ROS and interruption of ATP synthesis, which in turn cause DNA damage. It is anticipated that DNA damage is augmented by deposition, followed by interactions of Ag-np to the DNA leading to cell cycle arrest in the G(2)/M phase. The higher sensitivity of U251 cells and their arrest in G(2)/M phase could be explored further for evaluating the potential use of Ag-np in cancer therapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs.
    Scientific Reports 06/2015; DOI:10.1038/srep11170 · 5.08 Impact Factor
  • Source
    Journal of Biomedical Nanotechnology 03/2014; · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silver nanoparticles (AgNPs) attract considerable public attention both for their antimicrobial properties and their potential adverse effects. In the present study, endoplasmic reticulum (ER) stress was used as a sensitive and early biomarker to evaluate the toxic potential of AgNPs in three different human cell lines in vitro and in vivo in mice. In 16HBE cells, the activation of ER stress signaling pathway was observed by upregulated expression including xbp-1s, chop/DDIT3, TRIB3, ADM2, BIP, Caspase-12, ASNS and HERP at either the mRNA and/or protein levels. However, these changes were not observed in HUVECs or HepG2 cells. Furthermore, mice experiments showed that different tissues had various sensitivities to AgNPs following intratracheal instillation exposure. The lung, liver and kidney showed significant ER stress responses, however, only the lung and kidney exhibited apoptosis by TUNEL assay. The artery and tracheal tissues had lower ER stress and apoptosis after exposure. The lowest observable effect concentrations (LOEC) were proposed based on evaluation of AgNP induced ER stress response in cell and mouse models. In summary, preliminary evaluation of AgNP toxicity by monitoring the ER stress signaling pathway provides new insights toward the understanding the biological impacts of AgNPs. The adverse effects of exposure to AgNPs may be avoided by rational use within the safe dose. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 08/2015; 61. DOI:10.1016/j.biomaterials.2015.05.029 · 8.31 Impact Factor