Article

Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study

Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
The Lancet (Impact Factor: 39.21). 03/2009; 373(9669):1105-10. DOI: 10.1016/S0140-6736(09)60214-2
Source: PubMed

ABSTRACT The risk of epilepsy shortly after traumatic brain injury is high, but how long this high risk lasts is unknown. We aimed to assess the risk of epilepsy up to 10 years or longer after traumatic brain injury, taking into account sex, age, severity, and family history.
We identified 1 605 216 people born in Denmark (1977-2002) from the Civil Registration System. We obtained information on traumatic brain injury and epilepsy from the National Hospital Register and estimated relative risks (RR) with Poisson analyses.
Risk of epilepsy was increased after a mild brain injury (RR 2.22, 95% CI 2.07-2.38), severe brain injury (7.40, 6.16-8.89), and skull fracture (2.17, 1.73-2.71). The risk was increased more than 10 years after mild brain injury (1.51, 1.24-1.85), severe brain injury (4.29, 2.04-9.00), and skull fracture (2.06, 1.37-3.11). RR increased with age at mild and severe injury and was especially high among people older than 15 years of age with mild (3.51, 2.90-4.26) and severe (12.24, 8.52-17.57) injury. The risk was slightly higher in women (2.49, 2.25-2.76) than in men (2.01, 1.83-2.22). Patients with a family history of epilepsy had a notably high risk of epilepsy after mild (5.75, 4.56-7.27) and severe brain injury (10.09, 4.20-24.26).
The longlasting high risk of epilepsy after brain injury might provide a window for prevention of post-traumatic epilepsy.

Full-text

Available from: Jakob Christensen, Jun 14, 2015
0 Followers
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) is one of the most common causes of acquired epilepsy, and posttraumatic epilepsy (PTE) results in significant somatic and psychosocial morbidity. The risk of developing PTE relates directly to TBI severity, but the latency to first seizure can be decades after the inciting trauma. Given this "silent period," much work has focused on identification of molecular and radiographic biomarkers for risk stratification and on development of therapies to prevent epileptogenesis. Clinical management requires vigilant neurologic surveillance and recognition of the heterogeneous endophenotypes associated with PTE. Appropriate treatment of patients who have or are at risk for seizures varies as a function of time after TBI, and the clinician's armamentarium includes an ever-expanding diversity of pharmacological and surgical options. Most recently, neuromodulation with implantable devices has emerged as a promising therapeutic strategy for some patients with refractory PTE. Here, we review the epidemiology, diagnostic considerations, and treatment options for PTE and develop a roadmap for providers encountering this challenging clinical entity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
    Seminars in Neurology 02/2015; 35(1):57-63. DOI:10.1055/s-0035-1544239 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Post-traumatic headache (PTH) of the migraine type is a common complication of mild traumatic brain injury (including blast injuries) in active duty service members. Persistent and near-daily headache occur. Usual preventive medications may have unacceptable side effects. Anecdotal reports suggest that onabotulinum toxin A (OBA) might be an effective treatment in these patients.Methods This study is a real-time retrospective consecutive case series of all patients treated with OBA at the Concussion Care Clinic of Womack Army Medical Center, Ft. Bragg, NC, between August 2008 and August 2012. Clinical treatment and pharmacy records were corroborated with the electronic medical records in the Armed Forces Health Longitudinal Technology Application to determine demographics, current headache and treatment characteristics, and clinical and occupational outcomes.ResultsSixty-four subjects (63 male) with mean age of 31.3 + 7.5 (range 20-59) years were evaluated and treated. Blast injuries were most common (n = 36; 56.3%) and 7 patients (11%) reported a prior history of headache. Most patients (36; 56.3%) described more than 1 headache type and 48 (75%) patients had continuous pain. The most prevalent treating diagnosis was mixed continuous headache with migraine features on more than 15 days per month (n = 26; 40.6%). The mean time from injury to the first injections was 10.8 + 21.9 (1-96) months. Forty (62.5%) patients received the Food and Drug Administration-approved chronic migraine injection protocol. Forty-one (64%) patients reported being better. Two patients discontinued for side effects. Twenty-seven (41%) remained on active duty.Conclusions We demonstrate that active duty military patients with headaches related to concussions may benefit from treatment with OBA. Further studies are indicated.
    Headache The Journal of Head and Face Pain 02/2015; 55(3). DOI:10.1111/head.12495 · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An international consensus group of clinician-researchers in epilepsy, neurology, neuropsychology, and neuropsychiatry collaborated with the aim of developing clear guidance on standards for the diagnosis of psychogenic nonepileptic seizures (PNES). Because the gold standard of video electroencephalography (vEEG) is not available worldwide, or for every patient, the group delineated a staged approach to PNES diagnosis. Using a consensus review of the literature, this group evaluated key diagnostic approaches. These included: history, EEG, ambulatory EEG, vEEG/monitoring, neurophysiologic, neurohumoral, neuroimaging, neuropsychological testing, hypnosis, and conversation analysis. Levels of diagnostic certainty were developed including possible, probable, clinically established, and documented diagnosis, based on the availability of history, witnessed event, and investigations, including vEEG. The aim and hope of this report is to provide greater clarity about the process and certainty of the diagnosis of PNES, with the intent to improve the care for people with epilepsy and nonepileptic seizures.
    Epilepsia 09/2013; 54(11). DOI:10.1111/epi.12356 · 4.58 Impact Factor