Gene Expression in Uterine Leiomyoma from Tumors Likely to Be Growing (from Black Women over 35) and Tumors Likely to Be Non-Growing (from White Women over 35)

The University of Hong Kong, Queen Mary Hospital, Hong Kong
PLoS ONE (Impact Factor: 3.53). 06/2013; 8(6):e63909. DOI: 10.1371/journal.pone.0063909
Source: PubMed

ABSTRACT The study of uterine leiomyomata (fibroids) provides a unique opportunity to investigate the physiological and molecular determinants of hormone dependent tumor growth and spontaneous tumor regression. We conducted a longitudinal clinical study of premenopausal women with leiomyoma that showed significantly different growth rates between white and black women depending on their age. Growth rates for leiomyoma were on average much higher from older black women than for older white women, and we now report gene expression pattern differences in tumors from these two groups of study participants. Total RNA from 52 leiomyoma and 8 myometrial samples were analyzed using Affymetrix Gene Chip expression arrays. Gene expression data was first compared between all leiomyoma and normal myometrium and then between leiomyoma from older black women (age 35 or older) and from older white women. Genes that were found significant in pairwise comparisons were further analyzed for canonical pathways, networks and biological functions using the Ingenuity Pathway Analysis (IPA) software. Whereas our comparison of leiomyoma to myometrium produced a very large list of genes highly similar to numerous previous studies, distinct sets of genes and signaling pathways were identified in comparisons of older black and white women whose tumors were likely to be growing and non-growing, respectively. Key among these were genes associated with regulation of apoptosis. To our knowledge, this is the first study to compare two groups of tumors that are likely to have different growth rates in order to reveal molecular signals likely to be influential in tumor growth.


Available from: Shyamal Peddada, Jun 11, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uterine leiomyoma, benign monoclonal tumors, afflict an estimated 60% of reproductive-aged women, with higher rates among African American women. Leiomyoma are associated with significant medical costs, impaired fertility potential, obstetric complications, and gynecologic morbidity. Currently, the effective clinical management of leiomyoma is limited by the fact that hysterectomy is the only cure. The purpose of this article is to provide the practitioner with a practical overview of the clinical management of this disease. Published by Elsevier Inc.
    Obstetrics and Gynecology Clinics of North America 03/2015; 42(1):67-85. DOI:10.1016/j.ogc.2014.09.009 · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Human leiomyomata (fibroids) are benign tumors of the uterus, represent the most common neoplasms of reproductive-aged women and have a prevalence of ∼70% in the general population. This disorder conveys a significant degree of morbidity and remains the leading indication for hysterectomy in the USA. Prior investigations of aberrant microRNA (miRNA) expression in various malignancies have provided invaluable insight into the role of this class of small non-coding RNAs in tumor growth. Evidence of irregular miRNA expression in uterine fibroids has garnered recent interest for diagnostic and therapeutic applications. Since miRNA gene targets modulate several processes implicated in the genesis of uterine fibroids, more focused investigation has the potential to elucidate the functional significance of miRNA in the genesis and pathology of the disease.METHODS Comprehensive electronic searches of peer reviewed published literature in PubMed (US National Library of Medicine, National Institute of Health; were performed for content related to the biologic functions of miRNA, the roles of miRNA in human disease and studies investigating miRNA in the context of uterine leiomyomata. Herein, this article will review the current evidence supporting the use of miRNA expression profiling as an investigative tool to assess the pathobiology of uterine fibroids and will discuss potential future applications of miRNAs as biomarkers and therapeutic targets.RESULTSMounting evidence supports a functional role for miRNA as either indirect or direct regulators of gene expression which impacts the pathobiology of uterine fibroids. Specifically, miRNAs let-7, 200a, 200c, 93, 106b and 21 have been implicated in cellular proliferation, apoptosis, extracellular matrix turnover, angiogenesis and inflammation. Preliminary data provide evidence to suggest that respective in vitro miRNA expression in leiomyomata and myometrium is regulated by sex steroids.CONCLUSIONS Collectively, the identification of aberrantly expressed miRNAs in uterine leiomyomata and accumulating data derived from mining of gene target prediction models and recent functional studies support the concept that miRNAs might impact the genesis and progression of disease. However, the specific biologic functions of differential miRNA expression have yet to be confirmed in vivo. Further functional studies and developing miRNA technology may provide the basis for future applications of miRNAs in clinical medicine as biomarkers and therapeutic targets.
    Human Reproduction Update 04/2014; 20(5). DOI:10.1093/humupd/dmu017 · 8.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uterine fibroids are a prevalent gynaecological condition in reproductive-aged women and are the commonest reason for hysterectomy. The cellular composition of clonal fibroids are heterogeneous, with phenotypically dissimilar cells that include smooth muscle cells (SMC), vascular SMC (VSMC) and fibroblasts. The aim of our study was to investigate genes that are commonly differentially expressed between fibroid and myometrial whole tissues in phenotypically different sub-populations of cells isolated from fibroid and myometrium. Genes to be investigated by fluorescence-activated cell sorting, quantitative real-time PCR and immunocytochemistry include transforming growth factor β (TGFB) and retinoic acid (RA) signalling families and steroid hormone receptors. We hypothesised that each cell population isolated from fibroid and myometrium would differ in the expression of fibroid-associated genes. We demonstrated that phenotypically different cellular constituents of uterine fibroids differentially express cellular RA-binding protein 2 (CRABP2), progesterone receptor B (PRB) and TGFB receptor 2 mRNA in fibroid-derived cells of VSMC and SMC phenotype. CRABP2 mRNA was also differentially expressed in fibroblasts and VSMC sub-populations from within clonal fibroid tumours. We conclude that differential regulation of RA, TGFB and PR pathway transcription occurs in fibroid-associated SMC and -fibroblasts and that investigation of paracrine interactions between different cell types within the fibroid microenvironment provides an important new paradigm for understanding the pathophysiology of this common disease.
    Reproduction 04/2014; 147(5):683-92. DOI:10.1530/REP-13-0580