Novel binding studies of human serum albumin with trans-feruloyl maslinic acid.

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
Journal of photochemistry and photobiology. B, Biology (Impact Factor: 3.11). 02/2009; 95(2):81-8. DOI: 10.1016/j.jphotobiol.2009.01.002
Source: PubMed

ABSTRACT Human serum albumin (HSA) is a predominant protein in the blood. Most drugs can bind to HSA and be transported to target locations of the body. For this study, we have extracted 3-trans-feruloyl maslinic acid (FMA) from the medicinal plant Tetracera asiatica, its a non-fluorescent derivative have potent anti-cancer, anti-HIV, anti-diabetic, and anti-inflammatory activities. The binding constant of the compound with HSA, calculated from fluorescence data, was found as K(FMA)=1.42+/-0.01 x 10(8) M(-1), which corresponds to 10.9 kcal M(-1) of free energy. Furthermore, microTOF-Q mass spectrometry data showed binding of FMA at nanomolar concentrations of FMA to free HSA. The study detected a mass increase from 66,560 Da (free HSA) to 67,919 Da (HSA+drug). This indicated a strong binding of FMA to HSA, resulting in an increase of the protein's absorbance and fluorescence. The secondary structure of HSA+FMA (0.1 mM) complexes showed the protein secondary structure became partially unfolded upon interaction of FMA with HSA, as well as indicating that HSA-FMA complexes were formed. Docking experiments uncovered the binding mode of FMA in HSA molecule. It was found that FMA binds strongly in different places with hydrogen bonding at IB domain of Arg 114, Leu 115 and Asp 173.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5) M(-1), -7.175 Kcal M(-1) for coumarin derivative (CD) enamide; 0.837±0.01×10(5) M(-1), -6.685 Kcal M(-1) for coumarin derivative (CD) enoate, and 0.606±0.01×10(5) M(-1), -6.49 Kcal M(-1) for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.
    PLoS ONE 01/2013; 8(5):e63805. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 6-Mercaptopurine (6-MP) is one of a large series of purine analogues which has been found active against human leukemias. The equilibrium dialysis, circular dichroism (CD) and molecular docking were employed to study the binding of 6-MP to human serum albumin (HSA). The binding of 6-MP to HSA in the equilibrium dialysis experiment was detected by measuring the displacement of 6-MP by specific markers for site I on HSA, warfarin (RWF), phenylbutazone (PhB) and n-butyl p-aminobenzoate (ABE). It was shown, according to CD data, that binding of 6-MP to HSA leads to alteration of HSA secondary structure. Based on the findings from displacement experiment and molecular docking simulation it was found that 6-MP was located within binding cavity of subdomain IIA and the space occupied by site markers overlapped with that of 6-MP. Displacement of 6-MP by the RWF or PhB was not up the level expected for a competitive mechanism, therefore displacement of 6-MP was rather by non-cooperative than that the direct competition. Instead, in case of the interaction between ABE and 6-MP, when the little enhancement of the binding of ABE by 6-MP was found, the interaction could be via a positively cooperative mechanism.
    The Protein Journal 09/2012; 31(8). · 1.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The UV-vis absorption, steady state/time resolved fluorescence spectroscopy and synchronous fluorescence, circular dichroism (CD) spectroscopy are used to investigate the interaction mechanisms of dihydroartemisinin (DHA) and 9-hydroxy-dihydroartemisinin (9-OH DHA), respectively. The UV-vis studies present that DHA and 9-OH DHA can disturb the structure of bovine hemoglobin (BHb). Steady state/time resolved and synchronous fluorescence spectroscopy reveal that the binding constant of DHA with BHb is bigger than 9-OH DHA. CD spectra indicate DHA and 9-OH DHA can change the conformation of BHb. The comparison results suggest that the binding of BHb with DHA is more stable and stronger than 9-OH DHA.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 01/2014; 125C:120-125. · 1.98 Impact Factor


Available from
May 22, 2014