Article

Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice

Tekmira Pharmaceuticals Corporation, 100-8900 Glenlyon Parkway, Burnaby, British Columbia, Canada.
The Journal of clinical investigation (Impact Factor: 13.77). 03/2009; 119(3):661-73. DOI: 10.1172/JCI37515
Source: PubMed

ABSTRACT siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target's biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

Download full-text

Full-text

Available from: Marjorie Robbins, Dec 02, 2014
0 Followers
 · 
162 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activity of synthetic interfering nucleic acids (siRNAs) relies on the capacity of delivery systems to efficiently transport nucleic acids into the cytosol of target cells. The pyridylthiourea-grafted 25 KDa polyethylenimine (πPEI) is an excellent carrier for siRNA delivery into cells and it was extensively investigated in this report. Quantification of the siRNA-mediated gene silencing efficiency indicated that the πPEI specific delivery activity at the cell level may be measured and appears relatively constant in various cell lines. Delivery experiments assaying inhibitors of various entry pathways or concanamycin A, an inhibitor of the H+/ATPase vacuolar pump showed that the πPEI /siRNA polyplexes did not require any specific entry mode but strongly relied on vacuolar acidification for functional siRNA delivery. Next, πPEI polyplexes containing a siRNA targeting the transcription factor HIF-1α, known to be involved in tumor progression, were locally injected into mice xenografted with a human glioblastoma. A 55% reduction of the level of the target mRNA was observed at doses comparable to those used in vitro when the πPEI delivery activity was calculated per cell. Altogether, our study underscores the usefulness of "simple"/rough cationic polymers for siRNA delivery despite their intrinsic limitations. The study underscores as well as that bottom-up strategies make sense. The in vitro experiments can precede in vivo administration and be of high value for selection of the carrier with enhanced specific delivery activity and parallel other research aiming at improving synthetic delivery systems for resilience in the blood and for enhanced tissue-targeting capacity.
    Journal of Controlled Release 05/2014; DOI:10.1016/j.jconrel.2014.03.001 · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater fraction of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of PEG can sufficiently encapsulate siRNA, improve cellular uptake and the efficiency of gene silencing.
    Biochemical and Biophysical Research Communications 04/2014; 446(2). DOI:10.1016/j.bbrc.2014.02.120 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously described the development of novel sterically stabilized F3-targeted pH-sensitive liposomes, which exhibited the ability to target both cancer and endothelial cells. Herein, the therapeutic potential of those liposomes was assessed upon encapsulation of a siRNA against a well-validated molecular target, PLK1. Treatment of prostate cancer (PC3) and angiogenic endothelial (HMEC-1) cells with F3-targeted liposomes containing anti-PLK1 siRNA resulted in a significant decrease in cell viability, which was mediated by a marked PLK1 silencing, both at the mRNA and protein levels. Furthermore, pre-treatment of PC3 cells with F3-targeted liposomes containing anti-PLK1 siRNA enabled a 3-fold reduction of paclitaxel IC50 and a 2.5-fold augment of the percentage of cancer cells in G2/mitosis arrest, which ultimately culminated in cell death. Overall, the F3-targeted nanocarrier containing an anti-PLK1 siRNA might constitute a valuable system for prostate cancer treatment, either applied in a single schedule or combined with conventional chemotherapy.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 05/2013; 85(3). DOI:10.1016/j.ejpb.2013.04.007 · 4.25 Impact Factor