Nf1 haploinsufficiency and Icsbp deficiency synergize in the development of leukemias

Leibniz-Institut fuer Molekulare Pharmakologie, Berlin, Germany.
Blood (Impact Factor: 9.78). 03/2009; 113(19):4690-701. DOI: 10.1182/blood-2008-05-158485
Source: PubMed

ABSTRACT Loss of neurofibromin or interferon consensus sequence binding protein (Icsbp) leads to a myeloproliferative disorder. Transcription of NF1 is directly controlled by ICSBP. It has been postulated that loss of NF1 expression resulting from loss of transcriptional activation by ICSBP contributes to human hematologic malignancies. To investigate the functional cooperation of these 2 proteins, we have established Icsbp-deficient mice with Nf1 haploinsufficiency. We here demonstrate that loss of Icsbp and Nf1 haploinsufficiency synergize to induce a forced myeloproliferation in Icsbp-deficient mice because of an expansion of a mature myeloid progenitor cell. Furthermore, Nf1 haploinsufficiency and loss of Icsbp contribute synergistically to progression of the myeloproliferative disorder toward transplantable leukemias. Leukemias are characterized by distinct phenotypes, which correlate with progressive genetic abnormalities. Loss of Nf1 heterozygosity is not mandatory for disease progression, but its occurrence with other genetic abnormalities indicates progressive genetic alterations in a defined subset of leukemias. These data show that loss of the 2 tumor suppressor genes Nf1 and Icsbp synergize in the induction of leukemias.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine kinase inhibitors such as imatinib can effectively target the BCR-ABL oncoprotein in a majority of patients with chronic myeloid leukemia (CML). Unfortunately, some patients are primarily resistant to imatinib and others develop drug resistance, prompting interest in the discovery of new drug targets. Although much of this resistance can be explained by the presence of mutations within the tyrosine kinase domain of BCR-ABL, such mutations are not universally identified. Interferon regulatory factor-8 (IRF-8) is a transcription factor that is essential for myelopoiesis. Depressed IRF-8 levels are observed in a majority of CML patients and Irf-8-/- mice exhibit a CML-like disease. The underlying mechanisms of IRF-8 loss in CML are unknown. We hypothesized that BCR-ABL suppresses transcription of IRF-8 through STAT5, a proximal BCR-ABL target. Treatment of primary cells from newly diagnosed CML patients in chronic phase as well as BCR-ABL+ cell lines with imatinib increased IRF-8 transcription. Furthermore, IRF-8 expression in cell line models was necessary for imatinib-induced antitumor responses. We have demonstrated that IRF-8 is a direct target of STAT5 and that silencing of STAT5 induced IRF-8 expression. Conversely, activating STAT5 suppressed IRF-8 transcription. Finally, we showed that STAT5 blockade using a recently discovered antagonist increased IRF-8 expression in patient samples. These data reveal a previously unrecognized BCR-ABL-STAT5-IRF-8 network, which widens the repertoire of potentially new anti-CML targets.
    Journal of Biological Chemistry 04/2014; DOI:10.1074/jbc.M113.544320 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monocyte development is a tightly regulated and multi-staged process, occurring through several defined progenitor cell intermediates. The key transcription factors, including PU.1, IRF8 and KLF4, growth factors, such as M-CSF and IL-34 and cytokines that drive monocyte development from hematopoietic progenitor cells are well defined. However, the molecular controls that direct differentiation into the Ly6Chi inflammatory and Ly6Clo monocyte subsets are yet to be completely elucidated. This review will provide a summary of the transcriptional regulation of monocyte development. We will also discuss how these molecular controls are also critical for microglial development despite their distinct haematopoetic origins. Furthermore, we will examine recent breakthroughs in defining mechanisms that promote differentiation of specific monocyte subpopulations.
    Cellular Immunology 09/2014; 291(1-2). DOI:10.1016/j.cellimm.2014.02.008 · 1.87 Impact Factor
  • Source