Anti-Acne Agents Attenuate FGFR2 Signal Transduction in Acne

Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
Journal of Investigative Dermatology (Impact Factor: 7.22). 03/2009; 129(8):1868-77. DOI: 10.1038/jid.2009.8
Source: PubMed


Increased fibroblast growth factor receptor-2 (FGFR2) signaling has been proposed to be involved in acne pathogenesis and explains acne lesions in Apert syndrome and unilateral acneiform nevus associated with gain-of-function point mutations of FGFR2. If, indeed, increased FGFR2 signaling plays a major pathogenic role in follicular hyperkeratinization and sebaceous gland hypertrophy in acne, effective anti-acne drugs may attenuate increased FGFR2 signaling. The purpose of this article is to elucidate the hypothesis that known anti-acne agents may operate by downregulation of increased FGFR2 signaling. Anti-androgens suppress FGF-ligand expression, benzoyl peroxide induces FGFR2 downregulation by lysosomal receptor degradation, azelaic acid inhibits mitochondrial ATP formation required for receptor tyrosine kinase phosphorylation, tetracyclines inhibit the expression, and activity of FGFR2b downstream matrix metalloproteinases, and retinoids attenuate the FGFR2 pathway at several regulatory levels of the signal transduction cascade critical for cell cycle control, cell proliferation, differentiation, and lipogenesis. Erythromycin, a P-450 inhibitor, may interfere with FGFR2 signaling by its inhibitory effect on retinoid catabolism. The gain-of-function mutations of FGFR2 in Apert syndrome and unilateral acneiform nevus, and the proposed synergistic inhibitory interactions of anti-acne agents at various levels of the FGFR2-signaling cascade underline the role of FGFR2 signaling in the pathogenesis of acne.

Download full-text


Available from: Bodo Melnik, Mar 14, 2014
  • Source
    • "FGF plays a crucial role in controlling epithelial proliferation and differentiation. At the same time androgen mediated upregulation of FGFR2b signalling is also possible which brings out follicular hyperkeratinization and sebaceous gland hypertrophy thereby [25] [26]. (6) Corticotrophin releasing hormone and urocortin bind to the CRH-receptor 1 (CRH-R1) at human sebocytes and reduces sebocyte proliferation, upregulates 3í µí»½hydroxysteroid dehydrogenase, stimulates lipogenesis and keratinocyte differentiation, and increases in local inflammation by expressing IL-6 and IL-8 [27] [28] [29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acne is a common but serious skin disease, which affects approximately 80% adolescents and young adults in 11-30 age group. 42.5% of men and 50.9% of women continue to suffer from this disease into their twenties. Bacterial resistance is now at the alarming stage due to the irrational use of antibiotics. Hence, search for new lead molecule/bioactive and rational delivery of the existing drug (for better therapeutic effect) to the site of action is the need of the hour. Plants and plant-derived products have been an integral part of health care system since time immemorial. Therefore, plants that are currently used for the treatment of acne and those with a high potential are summarized in the present review. Most active plant extracts, namely, P. granatum, M. alba, A. anomala, and M. aquifolium exhibit minimum inhibitory concentration (MIC) in the range of 4-50 µg/mL against P. acnes, while aromatic oils of C. obovoides, C. natsudaidai, C. japonica, and C. nardus possess MICs 0.005-0.6 μL/mL and phytomolecules such as rhodomyrtone, pulsaquinone, hydropulsaquinone, honokiol, magnolol, xanthohumol lupulones, chebulagic acid and rhinacanthin-C show MIC in the range of 0.5-12.5 μg/mL. Novel drug delivery strategies of important plant leads in the treatment of acne have also been discussed.
    BioMed Research International 07/2014; 2014:301304. DOI:10.1155/2014/301304 · 1.58 Impact Factor
  • Source
    • "Here our aim is to provide data from mouse to inform genetic association studies in modern human populations. Any association of rs3827760 with altered gland function should be considered in light of other alleles at high frequency in East Asia, such as an apparent gain of function allele of FGFR2 [61], a key stimulator of sebaceous gland activity [62], a null allele of ABCC11, which reduces secretions from apocrine type (mammary, ceruminous and axillary) glands [63], [64], and altered endocrine parameters [65], [66], [67], contributing to the unique glandular phenotype that has arisen in this region. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The skin carries a number of appendages, including hair follicles and a range of glands, which develop under the influence of EDAR signalling. A gain of function allele of EDAR is found at high frequency in human populations of East Asia, with genetic evidence suggesting recent positive selection at this locus. The derived EDAR allele, estimated to have reached fixation more than 10,000 years ago, causes thickening of hair fibres, but the full spectrum of phenotypic changes induced by this allele is unknown. We have examined the changes in glandular structure caused by elevation of Edar signalling in a transgenic mouse model. We find that sebaceous and Meibomian glands are enlarged and that salivary and mammary glands are more elaborately branched with increased Edar activity, while the morphology of eccrine sweat and tracheal submucosal glands appears to be unaffected. Similar changes to gland sizes and structures may occur in human populations carrying the derived East Asian EDAR allele. As this allele attained high frequency in an environment that was notably cold and dry, increased glandular secretions could represent a trait that was positively selected to achieve increased lubrication and reduced evaporation from exposed facial structures and upper airways.
    PLoS ONE 10/2009; 4(10):e7591. DOI:10.1371/journal.pone.0007591 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Typical electrical characteristics of base station antennas are low sidelobe levels and electrical beam tilt capabilities. Previously (1999) we studied a base station antenna of an equally spaced array configuration which can achieve low sidelobe characteristics and electrical beam tilt in 800 MHz to 2000 MHz. In 1500 MHz and 2000 MHz bands, many grating lobes appeared in the case of electrical beam tilt. This paper shows that suppression of grating lobes can be achieved in 1500 MHz and 2000 MHz bands by employing an unequally spaced array antenna configuration
    Antennas and Propagation Society International Symposium, 2001. IEEE; 02/2001
Show more