Article

Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains.

Division of Neuropathology, Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9073, USA.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.37). 04/2009; 68(3):250-61. DOI: 10.1097/NEN.0b013e318198d320
Source: PubMed

ABSTRACT A pathologic hallmark of Huntington disease (HD) is the presence of intraneuronal aggregates of polyglutamine-containing huntingtin protein fragments. Monoclonal antibody 1C2 is a commercial antibody to normal human TATA-binding protein that detects long stretches of glutamine residues. Using 1C2 as a surrogate marker formutant huntingtin protein, we immunostained 19 HD cases, 10 normal controls, and 10 cases of frontotemporal degeneration with ubiquitinated inclusions as diseased controls. In the HD cases, there was consistent 1C2 immunoreactivity in the neocortex, striatum, hippocampus, lateral geniculate body, basis pontis, medullary reticular formation, and cerebellar dentate nucleus. The normal and diseased controls demonstrated 1C2 immunoreactivity only in the substantia nigra, locus coeruleus, and pituitary gland. Staining of 5 HD cases and 5 normal controls revealed a less consistent and less diagnostically useful morphologic immunoreactivity profile. These results indicate that widespread 1C2 immunoreactivity is present in diverse central nervous system areas in HD, and that in the appropriate setting, 1C2 staining can be a useful tool in the postmortem diagnosis of HD when neuromelanin-containing neuronal populations are avoided.

2 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Learning and memory deficits are early clinical manifestations of Huntington's disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75NTR negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75NTR function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75NTR are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75NTR levels in HD mutant mice heterozygous for p75NTR prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75NTR in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75NTR in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75NTR mediates synaptic, learning, and memory dysfunction in HD.
    Journal of Clinical Investigation 09/2014; 124(10). DOI:10.1172/JCI74809 · 13.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We review recent investigations regarding the relationship between selective neurodegeneration in the human brain and the variability in symptom profiles in Huntington's disease. Huntington's disease is a genetic neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the Huntingtin gene on chromosome 4, encoding a protein called huntingtin. The huntingtin protein is expressed ubiquitously in somatic tissue, however, the major pathology affects the brain with profound degeneration in the striatum and the cerebral cortex. Despite the disease being caused by a single gene, there is a major variability in the neuropathology, as well as major heterogeneity in the symptom profiles observed in Huntington's disease patients. The symptoms may vary throughout the disease course and present as varying degrees of movement disorder, cognitive decline, and mood and behavioral changes. To determine whether there is an anatomical basis underlying symptom variation, recent studies on the post-mortem human brain have shown a relationship between the variable degeneration in the forebrain and the variable symptom profile. In this review, we will summarize the progress relating cell loss in the striatum and cerebral cortex to symptom profile in Huntington's disease.
  • Annals of Physical and Rehabilitation Medicine 10/2011; 54. DOI:10.1016/j.rehab.2011.07.473