Article

Transforming Growth Factor {beta} Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors.

Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2009; 284(15):9755-63. DOI:10.1074/jbc.M809223200
Source: PubMed

ABSTRACT Transforming growth factor-beta (TGFbeta) superfamily ligands control a diverse set of cellular processes by activating type I and type II serine-threonine receptor kinases. Canonical TGFbeta signaling is mediated via the TbetaRI/ALK5 type I receptor that phosphorylates Smad2 and Smad3 in their SXS motif to facilitate their activation and subsequent role in transcriptional regulation. Canonical bone morphogenic protein (BMP) signaling is mediated via the ALK1/2/3/6 type I receptors that phosphorylate Smad1, Smad5, and Smad8 in their SXS motif. However, studies in endothelial cells have shown that TGFbeta can also lead to the phosphorylation of Smad1, dependent on ALK1 receptor activity. Here we present data showing that TGFbeta can significantly induce Smad1 phosphorylation in several non-endothelial cell lineages. Additionally, by using chemical inhibitors specific for the TGFbeta/activin/nodal (ALK4/5/7) and BMP (ALK1/2/3/6) type I receptors, we show that in some cell types TGFbeta induces Smad1 phosphorylation independently of the BMP type I receptors. Thus, TGFbeta-mediated Smad1 phosphorylation appears to occur via different receptor complexes in a cell type-specific manner.

0 0
 · 
0 Bookmarks
 · 
51 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
    Nature Reviews Cancer 05/2013; 13(5):328-41. · 29.54 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between the 30 and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
    Developmental Biology 03/2013; · 3.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: [This corrects the article on p. e83531 in vol. 8.].
    PLoS ONE 01/2014; 9(1). · 3.73 Impact Factor