Transforming Growth Factor {beta} Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors.

Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2009; 284(15):9755-63. DOI: 10.1074/jbc.M809223200
Source: PubMed

ABSTRACT Transforming growth factor-beta (TGFbeta) superfamily ligands control a diverse set of cellular processes by activating type I and type II serine-threonine receptor kinases. Canonical TGFbeta signaling is mediated via the TbetaRI/ALK5 type I receptor that phosphorylates Smad2 and Smad3 in their SXS motif to facilitate their activation and subsequent role in transcriptional regulation. Canonical bone morphogenic protein (BMP) signaling is mediated via the ALK1/2/3/6 type I receptors that phosphorylate Smad1, Smad5, and Smad8 in their SXS motif. However, studies in endothelial cells have shown that TGFbeta can also lead to the phosphorylation of Smad1, dependent on ALK1 receptor activity. Here we present data showing that TGFbeta can significantly induce Smad1 phosphorylation in several non-endothelial cell lineages. Additionally, by using chemical inhibitors specific for the TGFbeta/activin/nodal (ALK4/5/7) and BMP (ALK1/2/3/6) type I receptors, we show that in some cell types TGFbeta induces Smad1 phosphorylation independently of the BMP type I receptors. Thus, TGFbeta-mediated Smad1 phosphorylation appears to occur via different receptor complexes in a cell type-specific manner.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and altered passive mechanical properties of the detrusor.
    PLoS ONE 01/2013; 8(12):e82308. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TGF-β pathway transduces a variety of extracellular signals into intracellular responses that control multiple cellular processes, including cell growth, apoptosis, and differentiation. It encompasses 33 ligands that interact with 7 type II receptors and 5 type I receptors at the plasma membrane to potentially form 1,155 ligand-receptor complexes in mammalian cells. Retrieving the information of the complexes that are actually formed from reading the literature might be tedious and prone to missing links. Here, we have developed an automated literature-mining procedure to obtain the interactions of the TGF-β ligand-receptor network. By querying the Information Hyperlinked over Proteins (iHOP) online service and processing the results, we were able to find pairwise interactions between ligands and receptors that allowed us to build the network automatically from the literature. Comparison with available published review papers indicates that this method is able to automatically reconstruct and expand the TGF-β superfamily ligand-receptor network. Retrieving and parsing the full text of the manuscripts containing the interactions allowed us to refine the network interactions for specific cell lines.
    Journal of Membrane Biology 03/2014; · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article on p. e83531 in vol. 8.].
    PLoS ONE 01/2014; 9(1). · 3.53 Impact Factor