Article

Reducing environmental risk by improving N management in intensive Chinese agricultural systems.

Key Laboratory of Plant and Soil Interactions, Ministry of Education, China, and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2009; 106(9):3041-6. DOI: 10.1073/pnas.0813417106
Source: PubMed

ABSTRACT Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30-60% N savings, we found that current agricultural N practices with 550-600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service.

1 Bookmark
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irrigation projects have diverted water from the lower reaches of the Yellow River in China for more than 50 years and are unique in the world. This study investigated the effect of irrigation practices on the transfer and regional migration mechanisms of nitrate (NO3(-)) in surface water and groundwater in a Yellow River alluvial fan. Hydrochemical indices (EC, pH, Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO4(2-), and HCO(3-)) and stable isotopic composition (δ18O and δD) were determined for samples. Correlation analysis and principal component analysis (PCA) were performed to identify the sources of water constituents. Kriging was employed to simulate the spatial diffusion of NO3(-) and stable isotopes. Our results demonstrated that the groundwater exhibited more complex saline conditions than the surface water, likely resulting from alkaline conditions and lixiviation. NO3(-) was detected in all samples, 87.0% of which were influenced by anthropogenic activity. The NO3(-) pollution in groundwater was more serious than the common groundwater irrigation areas in the North China Plain (NCP), and was also slightly higher than that in surface water in the study area, but this was not statistically significant (p > 0.05). In addition, the groundwater sites with higher NO3(-) concentrations did not overlap with the spatial distribution of fertilizer consumption, especially in the central and western parts of the study area. NO3(-) distributions along the hydrogeological cross-sections were related to the groundwater flow system. Hydrochemical and environmental isotopic evidences indicate that surface water-groundwater interactions influence the spatial distribution of NO3(-) in the Piedmont of South Taihang Mountains.
    Environmental science. Processes & impacts. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: China's pig production has increased manifold in the past 50 years, and this has greatly affected the nitrogen (N) and phosphorus (P) use and losses in the pig production sector. However, the magnitude of these changes are not well-known. Here, we provide an in-depth account of the changes in pig production, and N and P use, and total N and P losses in the whole pig production chain during the period 1960-2010, through simulation modelling and using data from national statistics and farm survey. For the period 2010-2030, we explored possible effects of technological and managerial measures aimed at improving the performances of pig production via scenario analysis. We used and further developed the NUFER model to calculate the feed requirement and consumption, and N and P losses in different pig production systems for all the years. Between 1960 and 2010, pig production has largely shifted from the so-called backyard system to landless systems. The N use efficiencies at fattener level increased from 18 to 28%, due to the increased animal productivity. However, the N use efficiencies at the whole-system level decreased from 46 to 11% during this period, mainly due to the increase of land-less pig farms, which rely on imported feed and have no land-base for manure disposal. The total N and P losses were 5289 and 829 Gg in 2010, which is 30 and 95 times higher than in 1960. In the business as usual scenario, the total N and P losses were projected to increase by 25 and 55% between 2010 and 2030, respectively. Analyses of other scenarios indicate that packages of technological and managerial measures can decrease total N and P losses by 64 and 95%, respectively. Such improvements require major transition in the pig production sector, notably in of manure management, herd management and feeding practices.
    Environmental science & technology. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole.
    PLoS ONE 01/2014; 9(11):e112273. · 3.53 Impact Factor

Full-text

Download
9 Downloads
Available from