Inhibiting pro-death NMDA receptor signaling dependent on the NR2 PDZ ligand may not affect synaptic function or synaptic NMDA receptor signaling to gene expression.

Center for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
Channels (Austin, Tex.) (Impact Factor: 2.32). 02/2009; 3(1):12-5. DOI: 10.4161/chan.3.1.7864
Source: PubMed

ABSTRACT NMDA receptors (NMDARs) mediate ischemic brain damage, in part through interactions of the PDZ ligand of NR2 subunits with the PDZ domain proteins PSD-95 and neuronal nitric oxide synthase located within the NMDAR signaling complex. We have recently shown that this PDZ ligand-dependent pathway promotes neuronal death via p38 activation. A peptide mimetic of the NR2B PDZ ligand (TAT-NR2B9c) reduces p38-mediated death in vitro and p38-dependent ischemic damage in vivo. In the absence of the PDZ ligand-p38 pathway, such as in TAT-NR2B9c-treated neurons, or in NMDAR-expressing non-neuronal cells, NMDAR-dependent excitotoxicity is mediated largely by JNK and requires greater Ca2+ influx. A major reason for blocking pro-death signaling events downstream of the NMDAR as an anti-excitotoxic strategy is that it may spare physiological synaptic function and signaling. We find that neuroprotective doses of TAT-NR2B9c do not alter the frequency of spontaneous synaptic events within networks of cultured cortical neurons nor is mini-EPSC frequency altered. Furthermore, TAT-NR2B9c does not inhibit the capacity of synaptic NMDAR activity to promote neuroprotective changes in gene expression, including the upregulation of PACAP via CREB, and suppression of the pro-oxidative FOXO target gene Txnip. Thus, while the NR2 PDZ ligand does not account for all the excitotoxic effects of excessive NMDAR activity, these findings underline the value of the specific targeting of death pathways downstream of the NMDAR.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
    Progress in Neurobiology 12/2013; DOI:10.1016/j.pneurobio.2013.11.006 · 10.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperbaric oxygen (HBO) therapy and memantine, a non-competitive NMDA antagonist, are both promising treatment strategies for improving stroke prognosis. However, HBO's narrow therapeutic time window (<6 h post-stroke) and the adverse effect of high-dose MEM administration limits the use of these therapeutic interventions. In this study, we investigated whether or not MEM could prolong the narrow therapeutic window of HBO treatment. Transient focal cerebral ischemia was induced in male Sprague-Dawley rats by middle cerebral artery occlusion (MCAO) for 120 min. MCAO produced neurobehavioral deficits, increased infarction volume, increased Evans blue (EB) content and levels of pro-inflammatory factors, as well as depleted glutathione (GSH), and reduced catalase (CAT) and superoxide dismutase (SOD) activity in the ischemic ipsilateral hemisphere. The combination of 5 mg/kg MEM treatment 15 min after the onset of ischemic event and HBO therapy 12 h post-reperfusion significantly restored neurologic scores, EB concentration and IL-10 levels, as well as significantly decreased infarct volume and increased antioxidant activity. These results imply that the combination of MEM and HBO therapy not only prolongs the therapeutic window of HBO treatment, but also lowers the dosage requirement of MEM. The mechanism underlying the neuroprotective effects of the combined treatment may lie in alleviated blood-brain barrier (BBB) permeability, inhibited inflammatory response, and up-regulation of the antioxidant enzyme activity.
    Molecular Neurobiology 10/2014; DOI:10.1007/s12035-014-8949-5 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca(2+) homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.
    Neural Regeneration Research 07/2013; 8(21):2003-14. DOI:10.3969/j.issn.1673-5374.2013.21.009 · 0.23 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014