Article

Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos.

Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
Autophagy (Impact Factor: 11.42). 06/2009; 5(4):520-6. DOI: 10.4161/auto.5.4.7768
Source: PubMed

ABSTRACT Autophagy mediates the bulk turnover of cytoplasmic constituents in lysosomes. During embryonic development in animals, a dramatic degradation of yolk proteins and synthesis of zygotic proteins takes place, leading to intracellular remodeling and cellular differentiation. Zebrafish represents a unique system to study autophagy due in part to its rapid embryonic development relative to other vertebrates. The technical advantages of this organism make it uniquely suited to various studies including high-throughput drug screens. To study autophagy in zebrafish, we identified two zebrafish Atg8 homologs, lc3 and gabarap, and generated two transgenic zebrafish lines expressing GFP-tagged versions of the corresponding proteins. Similar to yeast Atg8 and mammalian LC3, zebrafish Lc3 undergoes post-translational modification starting at the pharyngula stage during embryonic development. We observed a high level of autophagy activity in zebrafish embryos, which can be further upregulated by the TOR inhibitor rapamycin or the calpain inhibitor calpeptin. In addition, zebrafish Gabarap accumulates within lysosomes upon autophagy induction. Thus, we established a convenient zebrafish tool to assay autophagic activity during embryogenesis in vivo.

2 Followers
 · 
289 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution imaging of autophagy has been used intensively in cell culture studies, but so far it has been difficult to visualize this process in detail in whole animal models. In this study we present a versatile method for high-resolution imaging of microbial infection in zebrafish larvae by injecting pathogens into the tail fin. This allows visualization of autophagic compartments by light and electron microscopy, which makes it possible to correlate images acquired by the 2 techniques. Using this method we have studied the autophagy response against Mycobacterium marinum infection. We show that mycobacteria during the progress of infection are frequently associated with GFP-Lc3-positive vesicles, and that 2 types of GFP-Lc3-positive vesicles were observed. The majority of these vesicles were approximately 1 μm in size and in close vicinity of bacteria, and a smaller number of GFP-Lc3-positive vesicles was larger in size and were observed to contain bacteria. Quantitative data showed that these larger vesicles occurred significantly more in leukocytes than in other cell types, and that approximately 70% of these vesicles were positive for a lysosomal marker. Using electron microscopy, it was found that approximately 5% of intracellular bacteria were present in autophagic vacuoles and that the remaining intracellular bacteria were present in phagosomes, lysosomes, free inside the cytoplasm or occurred as large aggregates. Based on correlation of light and electron microscopy images, it was shown that GFP-Lc3-positive vesicles displayed autophagic morphology. This study provides a new approach for injection of pathogens into the tail fin, which allows combined light and electron microscopy imaging in vivo and opens new research directions for studying autophagy process related to infectious diseases.
    Autophagy 08/2014; 10(10). DOI:10.4161/auto.29992 · 11.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
    Journal of Visualized Experiments 01/2014; 91:e51601. DOI:10.3791/51601
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract From a hitherto underappreciated phenomenon, autophagy has become one of the most intensively studied cellular processes in recent years. Its role in cellular homeostasis, development and disease is supported by a fast growing body of evidence. Surprisingly, only a small fraction of new observations regarding the physiological functions of cellular “self-digestion” comes from zebrafish, one of the most popular vertebrate model organisms. Here we review the existing information about autophagy reporter lines, genetic knock-down assays and small molecular reagents that have been tested in this system. As we argue, some of these tools have to be used carefully due to possible pleiotropic effects. However, when applied rigorously, in combination with novel mutant strains and genome editing techniques, they could also transform zebrafish into an important animal model of autophagy research.
    Methods 12/2014; DOI:10.1016/j.ymeth.2014.12.004 · 3.22 Impact Factor

Full-text (2 Sources)

Download
77 Downloads
Available from
May 21, 2014