Article

Phosphorylation of a tyrosine in the amyloid-beta protein precursor intracellular domain inhibits Fe65 binding and signaling.

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
Journal of Alzheimer's disease: JAD (Impact Factor: 4.17). 03/2009; 16(2):301-7. DOI: 10.3233/JAD-2009-0970
Source: PubMed

ABSTRACT The phosphorylation of Tyr-682 residue in the intracellular domain (AID) of amyloid-beta protein precursor (AbetaPP) is significantly enhanced in Alzheimer's disease patients' brain. The role of this phosphotyrosine, however, remains elusive. Here we report that phosphorylation of Tyr-682 inhibits the interactions between AbetaPP and Fe65, which is the main regulatory mechanism controlling Fe65 nuclear signaling. Furthermore, we show that tyrosine phosphorylation of AbetaPP also inhibits interaction of the two other Fe65 family members, Fe65L1 and Fe65L2. Likewise, docking of Fe65, Fe65L1 and Fe65L2 to APLP1 and APLP2, the two other members of the AbetaPP-gene family, is abolished by analogous phosphorylation events. Our results indicate that phosphorylation of the cytoplasmic tail of AbetaPP on Tyr-682 represents a second mechanism, alternative to AbetaPP processing by secretases, that regulates AbetaPP/Fe65 downstream signaling pathways.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphotyrosine binding domains (PTB) are protein–protein interaction domains that play important roles in various cellular signal transduction pathways. The second phosphotyrosine binding domain (PTB2) of the human scaffolding protein FE65 interacts with the C-terminal part of the Amyloid Precursor Protein (APP) involved in Alzheimer’s disease. The structure of PTB2 in complex with a 32 amino acid fragment of APP has been solved previously by X-ray crystallography. Here, we report the NMR spectral assignments of the free FE65 PTB2. This provides the basis for further investigation of the interactions of PTB2 with peptides and small organic ligands with the aim of disrupting the PTB2-APP interaction.
    Biomolecular NMR Assignments 01/2013; · 0.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central funtional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.
    PLoS ONE 01/2014; 9(9):e108576. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FE65 is a cytosolic adapter protein and an important binding partner of the amyloid precursor protein (APP). Dependent on Thr668 phosphorylation in APP, which influences amyloidogenic APP processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease (AD) and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and down-stream signaling pathways, the identification of the FE65 interactome is of central interest in AD research. In this study, we identified 123 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65-binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice when compared to wild type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be upregulated in DKO neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of the intracellular calcium homeostasis. While transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.
    Molecular &amp Cellular Proteomics 11/2013; · 7.25 Impact Factor