Increased accuracy of artificial selection by using the realized relationship matrix.

Biosciences Research Division, Department of Primary Industries Victoria, 1 Park Drive, Bundoora 3083, Australia.
Genetics Research (Impact Factor: 2.2). 03/2009; 91(1):47-60. DOI: 10.1017/S0016672308009981
Source: PubMed

ABSTRACT Dense marker genotypes allow the construction of the realized relationship matrix between individuals, with elements the realized proportion of the genome that is identical by descent (IBD) between pairs of individuals. In this paper, we demonstrate that by replacing the average relationship matrix derived from pedigree with the realized relationship matrix in best linear unbiased prediction (BLUP) of breeding values, the accuracy of the breeding values can be substantially increased, especially for individuals with no phenotype of their own. We further demonstrate that this method of predicting breeding values is exactly equivalent to the genomic selection methodology where the effects of quantitative trait loci (QTLs) contributing to variation in the trait are assumed to be normally distributed. The accuracy of breeding values predicted using the realized relationship matrix in the BLUP equations can be deterministically predicted for known family relationships, for example half sibs. The deterministic method uses the effective number of independently segregating loci controlling the phenotype that depends on the type of family relationship and the length of the genome. The accuracy of predicted breeding values depends on this number of effective loci, the family relationship and the number of phenotypic records. The deterministic prediction demonstrates that the accuracy of breeding values can approach unity if enough relatives are genotyped and phenotyped. For example, when 1000 full sibs per family were genotyped and phenotyped, and the heritability of the trait was 0.5, the reliability of predicted genomic breeding values (GEBVs) for individuals in the same full sib family without phenotypes was 0.82. These results were verified by simulation. A deterministic prediction was also derived for random mating populations, where the effective population size is the key parameter determining the effective number of independently segregating loci. If the effective population size is large, a very large number of individuals must be genotyped and phenotyped in order to accurately predict breeding values for unphenotyped individuals from the same population. If the heritability of the trait is 0.3, and N(e)=100, approximately 12474 individuals with genotypes and phenotypes are required in order to predict GEBVs of un-phenotyped individuals in the same population with an accuracy of 0.7 [corrected].

1 Follower
  • Source
    03/2011, Supervisor: Gilles Renand
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background GBLUP (genomic best linear unbiased prediction) uses high-density single nucleotide polymorphism (SNP) markers to construct genomic identity-by-state (IBS) relationship matrices. However, identity-by-descent (IBD) relationships can be accurately calculated for extremely sparse markers. Here, we compare the accuracy of prediction of genome-wide breeding values (GW-BV) for a sib-evaluated trait in a typical aquaculture population, assuming either IBS or IBD genomic relationship matrices, and by varying marker density and size of the training dataset. Methods A simulation study was performed, assuming a population with strong family structure over three subsequent generations. Traditional and genomic BLUP were used to estimate breeding values, the latter using either IBS or IBD genomic relationship matrices, with marker densities ranging from 10 to ~1200 SNPs/Morgan (M). Heritability ranged from 0.1 to 0.8, and phenotypes were recorded on 25 to 45 sibs per full-sib family (50 full-sib families). Models were compared based on their predictive ability (accuracy) with respect to true breeding values of unphenotyped (albeit genotyped) sibs in the last generation. Results As expected, genomic prediction had greater accuracy compared to pedigree-based prediction. At the highest marker density, genomic prediction based on IBS information (IBS-GS) was slightly superior to that based on IBD information (IBD-GS), while at lower densities (≤100 SNPs/M), IBD-GS was more accurate. At the lowest densities (10 to 20 SNPs/M), IBS-GS was even outperformed by the pedigree-based model. Accuracy of IBD-GS was stable across marker densities performing well even down to 10 SNPs/M (2.5 to 6.1% reduction in accuracy compared to ~1200 SNPs/M). Loss of accuracy due to reduction in the size of training datasets was moderate and similar for both genomic prediction models. The relative superiority of (high-density) IBS-GS over IBD-GS was more pronounced for traits with a low heritability. Conclusions Using dense markers, GBLUP based on either IBD or IBS relationship matrices proved to perform better than a pedigree-based model. However, accuracy of IBS-GS declined rapidly with decreasing marker densities, and was even outperformed by a traditional pedigree-based model at the lowest densities. In contrast, the accuracy of IBD-GS was very stable across marker densities.
    Genetics Selection Evolution 02/2015; 47(1). DOI:10.1186/s12711-014-0084-2 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estimated breeding values (EBVs) are traditionally obtained from pedigree information. However, EBVs from high-density genotypes can have higher accuracy than EBVs from pedigree information. At the same time, it has been shown that EBVs from genomic data lead to lower increases in inbreeding compared with traditional selection based on genealogies. Here we evaluate the performance with BLUP selection based on genealogical coancestry with three different genome-based coancestry estimates: (1) an estimate based on shared segments of homozygosity, (2) an approach based on SNP-by-SNP count corrected by allelic frequencies, and (3) the identity by state methodology. We evaluate the effect of different population sizes, different number of genomic markers, and several heritability values for a quantitative trait. The performance of the different measures of coancestry in BLUP is evaluated in the true breeding values after truncation selection and also in terms of coancestry and diversity maintained. Accordingly, cross-performances were also carried out, that is, how prediction based on genealogical records impacts the three other measures of coancestry and inbreeding, and viceversa. Our results show that the genetic gains are very similar for all four coancestries, but the genomic-based methods are superior to using genealogical coancestries in terms of maintaining diversity measured as observed heterozygosity. Furthermore, the measure of coancestry based on shared segments of the genome seems to provide slightly better results on some scenarios, and the increase in inbreeding and loss in diversity is only slightly larger than the other genomic selection methods in those scenarios. Our results shed light on genomic selection vs. traditional genealogical-based BLUP and make the case to manage the population variability using genomic information to preserve the future success of selection programmes.
    Frontiers in Genetics 01/2015; 6:127. DOI:10.3389/fgene.2015.00127


Available from