Plantar pressure distribution patterns during gait in diabetic neuropathy patients with a history of foot ulcers.

Laboratory of Biomechanics of the Human Movement and Posture, Physical Therapy, Speech and Occupational Therapy Department, Faculdade de Medicina, Universidade de São Paulo/SP, Brazil.
Clinics (São Paulo, Brazil) (Impact Factor: 1.59). 05/2009; 64(2):113-20. DOI: 10.1590/S1807-59322009000200008
Source: PubMed

ABSTRACT To investigate and compare the influence of a previous history of foot ulcers on plantar pressure variables during gait of patients with diabetic neuropathy.
Foot ulcers may be an indicator of worsening diabetic neuropathy. However, the behavior of plantar pressure patterns over time and during the progression of neuropathy, especially in patients who have a clinical history of foot ulcers, is still unclear.
Subjects were divided into the following groups: control group, 20 subjects; diabetic neuropathy patients without foot ulcers, 17 subjects; and diabetic neuropathy patients with at least one healed foot ulcer within the last year, 10 subjects. Plantar pressure distribution was recorded during barefoot gait using the Pedar-X system.
Neuropathic subjects from both the diabetic neuropathy and DNU groups showed higher plantar pressure than control subjects. At midfoot, the peak pressure was significantly different among all groups: control group (139.4+/-76.4 kPa), diabetic neuropathy (205.3+/-118.6 kPa) and DNU (290.7+/-151.5 kPa) (p=0.008). The pressure-time integral was significantly higher in the ulcerated neuropathic groups at midfoot (CG: 37.3+/-11.4 kPa.s; DN: 43.3+/-9.1 kPa.s; DNU: 68.7+/-36.5 kPa.s; p=0.002) and rearfoot (CG: 83.3+/-21.2 kPa.s; DN: 94.9+/-29.4 kPa.s; DNU: 102.5+/-37.9 kPa.s; p=0.048).
A history of foot ulcers in the clinical history of diabetic neuropathy subjects influenced plantar pressure distribution, resulting in an increased load under the midfoot and rearfoot and an increase in the variability of plantar pressure during barefoot gait. The progression of diabetic neuropathy was not found to influence plantar pressure distribution.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure-time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, p<.01; increase in function of ankle dorsiflexion, p<.05), earlier lateral forefoot contact with respect to medial forefoot (TPP anticipation, p<.01), and increased participation of hallux (increased PP and PTI, p=.03) and toes (increase in PTI, medium effect size). A slower COP mean velocity (p=.05), and an increase in overall foot and ankle function (p<.05) were also observed. In most cases, the values returned to baseline after the follow-up (p<.05). Intervention discreetly changed foot rollover towards a more physiological process, supported by improved plantar pressure distribution and better functional condition of the foot ankle complex. Continuous monitoring of the foot status and patient education are necessary, and can contribute to preserving the integrity of foot muscles and joints impaired by polyneuropathy. Trial registration: Identifier: NCT01207284, registered in 20th September 2010.
    BMC Musculoskeletal Disorders 04/2014; 15(1):137. · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic peripheral neuropathy is an important cause of foot ulceration and limb loss. This systematic review and meta-analysis investigated the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and dynamic plantar pressures. Electronic databases were searched systematically for articles reporting the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and plantar pressures. Searches were restricted to articles published between January 2000 and April 2012. Outcome measures assessed included spatiotemporal parameters, lower limb kinematics, kinetics, muscle activation and plantar pressure. Meta-analyses were carried out on all outcome measures reported by ≥3 studies. Sixteen studies were included consisting of 382 neuropathy participants, 216 diabetes controls without neuropathy and 207 healthy controls. Meta-analysis was performed on 11 gait variables. A high level of heterogeneity was noted between studies. Meta-analysis results suggested a longer stance time and moderately higher plantar pressures in diabetic peripheral neuropathy patients at the rearfoot, midfoot and forefoot compared to controls. Systematic review of studies suggested potential differences in the biomechanical characteristics (kinematics, kinetics, EMG) of diabetic neuropathy patients. However these findings were inconsistent and limited by small sample sizes. Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies.
    Clinical biomechanics (Bristol, Avon) 08/2013; · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated dynamic plantar pressures are a consistent finding in diabetes patients with peripheral neuropathy with implications for plantar foot ulceration. This meta-analysis aimed to compare the plantar pressures of diabetes patients that had peripheral neuropathy and those with neuropathy with active or previous foot ulcers.
    PLoS ONE 01/2014; 9(6):e99050. · 3.73 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014