Article

Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells.

Center for Clinical AIDS Research and Education, University of California-Los Angeles, 9911 West Pico Boulevard, Suite 980, Los Angeles, California 90035, USA.
Nature medicine (Impact Factor: 28.05). 03/2009; 15(3):285-92. DOI: 10.1038/nm.1932
Source: PubMed

ABSTRACT Gene transfer has potential as a once-only treatment that reduces viral load, preserves the immune system and avoids lifetime highly active antiretroviral therapy. This study, which is to our knowledge the first randomized, double-blind, placebo-controlled, phase 2 cell-delivered gene transfer clinical trial, was conducted in 74 HIV-1-infected adults who received a tat-vpr-specific anti-HIV ribozyme (OZ1) or placebo delivered in autologous CD34+ hematopoietic progenitor cells. There were no OZ1-related adverse events. There was no statistically significant difference in viral load between the OZ1 and placebo group at the primary end point (average at weeks 47 and 48), but time-weighted areas under the curve from weeks 40-48 and 40-100 were significantly lower in the OZ1 group. Throughout the 100 weeks, CD4+ lymphocyte counts were higher in the OZ1 group. This study indicates that cell-delivered gene transfer is safe and biologically active in individuals with HIV and can be developed as a conventional therapeutic product.

Full-text

Available from: Janet Macpherson, Apr 16, 2015
1 Follower
 · 
311 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-retroviral therapy (ART) for human immunodeficiency virus-1 (HIV-1) infection has transformed its clinical course with spectacular reductions in morbidity and mortality, turning this once fatal diagnosis into a manageable chronic infection. However, ART has its limitations. Current ART does not eliminate the virus. Interruption of therapy results in rapid rebound of the virus, and such rebounds are associated with excess morbidity and mortality. This means that therapy once started is for life. This raises the issues of drug resistance due to suboptimal compliance, cumulative toxicities and mounting costs. Efforts to control the virus through novel interventions, particularly through cell or gene therapy have had a resurgence of interest as a single patient was apparently cured by an allogeneic stem cell transplantation from a donor who carried homozygous mutations that disable expression of the HIV-1 co-receptor CCR5. This paper reviews the state of play of gene therapy for HIV infection in the context of a recent paper showing the safety and feasibility of an approach that involves the ex vivo disruption of the ccr5 gene in autologous CD4 T cells using a virally delivered zinc finger nuclease, before their expansion and reinfusion. Although there are still considerable challenges, this approach may point towards a future drug free therapy for HIV-1 infection.
    07/2014; 3(7):e19. DOI:10.1038/cti.2014.12
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic devices that directly detect and respond to intracellular concentrations of proteins are important synthetic biology tools, supporting the design of biological systems that target, respond to or alter specific cellular states. Here, we develop ribozyme-based devices that respond to protein ligands in two eukaryotic hosts, yeast and mammalian cells, to regulate the expression of a gene of interest. Our devices allow for both gene-ON and gene-OFF response upon sensing the protein ligand. As part of our design process, we describe an in vitro characterization pipeline for prescreening device designs to identify promising candidates for in vivo testing. The in vivo gene-regulatory activities in the two types of eukaryotic cells correlate with in vitro cleavage activities determined at different physiologically relevant magnesium concentrations. Finally, localization studies with the ligand demonstrate that ribozyme switches respond to ligands present in the nucleus and/or cytoplasm, providing new insight into their mechanism of action. By extending the sensing capabilities of this important class of gene-regulatory device, our work supports the implementation of ribozyme-based devices in applications requiring the detection of protein biomarkers.
    Nucleic Acids Research 10/2014; DOI:10.1093/nar/gku875 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 aspartyl protease (PR) plays a key role in virion morphogenesis, underscoring the effectiveness of protease inhibitors (PI). Despite their utility, side effects and drug-resistance remains a problem. We report the development of RNA aptamers as inhibitors of HIV-1 PR for potential use in anti-HIV gene therapy. Employing Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we isolated four unique families of anti-HIV-1 PR RNA aptamers displaying moderate binding affinities (Kd = 92-140 nmol/l) and anti-PR inhibitory activity (Kis = 138-647 nmol/l). Second-generation RNA aptamers selected from partially randomized pools based on two of the aptamer sequences displayed striking enhancements in binding (Kds = 2-22 nmol/l) and inhibition (Kis = 31-49 nmol/l). The aptamers were specific in that they did not bind either the related HIV-2 protease, or the cellular aspartyl protease, Cathepsin D. Site-directed mutagenesis of a second-generation aptamer to probe the predicted secondary structure indicated that the stem-loops SL2 and SL3 and the stem P1 were essential for binding and that only the 3'-most 17 nucleotides were dispensable. Anti-PR aptamers inhibited HIV replication in vitro and the degree of inhibition was higher for second-generation aptamers with greater affinity and the inhibition was abrogated for a nonbinding aptamer variant.
    02/2015; 4(2):e228. DOI:10.1038/mtna.2015.1