Motor control in a Drosophila taste circuit.

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, 291 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720, USA.
Neuron (Impact Factor: 15.77). 03/2009; 61(3):373-84. DOI: 10.1016/j.neuron.2008.12.033
Source: PubMed

ABSTRACT Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The gustatory system provides vital sensory information to determine feeding and appetitive learning behaviors. Very little is known, however, about higher-order gustatory circuits in the highly tractable model for neurobiology, Drosophila melanogaster. Here we report second-order sweet gustatory projection neurons (sGPNs) in the Drosophila brain using a powerful behavioral screen. Silencing neuronal activity reduces appetitive behaviors, whereas inducible activation results in food acceptance via proboscis extensions. sGPNs show functional connectivity with Gr5a(+) sweet taste neurons and are activated upon sucrose application to the labellum. By tracing sGPN axons, we identify the antennal mechanosensory and motor center (AMMC) as an immediate higher-order processing center for sweet taste. Interestingly, starvation increases sucrose sensitivity of the sGPNs in the AMMC, suggesting that hunger modulates the responsiveness of the secondary sweet taste relay. Together, our results provide a foundation for studying gustatory processing and its modulation by the internal nutrient state. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 02/2015; 85(4). DOI:10.1016/j.neuron.2015.01.005 · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers.
    Development 01/2015; 142(2-2):394-405. DOI:10.1242/dev.115071 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotaxis is important for the survival of most animals. How the brain translates sensory input into motor output beyond higher olfactory processing centers is largely unknown. We describe a group of excitatory neurons, termed Odd neurons, which are important for Drosophila larval chemotaxis. Odd neurons receive synaptic input from projection neurons in the calyx of the mushroom body and project axons to the central brain. Functional imaging shows that some of the Odd neurons respond to odor. Larvae in which Odd neurons are silenced are less efficient at odor tracking than controls and sample the odor space more frequently. Larvae in which the excitability of Odd neurons is increased are better at odor intensity discrimination and odor tracking. Thus, the Odd neurons represent a distinct pathway that regulates the sensitivity of the olfactory system to odor concentrations, demonstrating that efficient chemotaxis depends on processing of odor strength downstream of higher olfactory centers. Copyright © 2015 Slater et al.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 02/2015; 35(5):1831-48. DOI:10.1523/JNEUROSCI.2331-14.2015 · 6.75 Impact Factor


Available from