Motor Control in a Drosophila Taste Circuit

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, 291 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720, USA.
Neuron (Impact Factor: 15.98). 03/2009; 61(3):373-84. DOI: 10.1016/j.neuron.2008.12.033
Source: PubMed

ABSTRACT Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding behavior requires unraveling the mysteries of neurons, glia, and their extensive connectivity. Drosophila has emerged as an excellent organism for studying the neural basis of behavior. This can be largely attributed to the extensive effort of the fly community to develop numerous sophisticated genetic tools for visualizing, mapping, and manipulating behavioral circuits. Here, we attempt to highlight some of the new reagents, techniques and approaches available for dissecting behavioral circuits in Drosophila. We focus on detailing intersectional strategies such as the Flippase-induced intersectional Gal80/Gal4 repression (FINGR), because of the tremendous potential they possess for mapping the minimal number of cells required for a particular behavior. The logic and strategies outlined in this review should have broad applications for other genetic model organisms.
    Journal of Comparative Physiology 04/2015; DOI:10.1007/s00359-015-1010-y · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Feeding is dynamically regulated by the palatability of the food source and the physiological needs of the animal. How consumption is controlled by external sensory cues and internal metabolic state remains under intense investigation. Here, we identify four GABAergic interneurons in the Drosophila brain that establish a central feeding threshold which is required to inhibit consumption. Inactivation of these cells results in indiscriminate and excessive intake of all compounds, independent of taste quality or nutritional state. Conversely, acute activation of these neurons suppresses consumption of water and nutrients. The output from these neurons is required to gate activity in motor neurons that control meal initiation and consumption. Thus, our study reveals a layer of inhibitory control in feeding circuits that is required to suppress a latent state of unrestricted and nonselective consumption.
    Neuron 07/2014; 83(1):164-77. DOI:10.1016/j.neuron.2014.05.006 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the Down syndrome cell-adhesion molecule (Dscam) is increased in the brains of patients with several neurological disorders. Although Dscam is critically involved in many aspects of neuronal development, little is known about either the mechanism that regulates its expression or the functional consequences of dysregulated Dscam expression. Here, we show that Dscam expression levels serve as an instructive code for the size control of presynaptic arbor. Two convergent pathways, involving dual leucine zipper kinase (DLK) and fragile X mental retardation protein (FMRP), control Dscam expression through protein translation. Defects in this regulation of Dscam translation lead to exuberant presynaptic arbor growth in Drosophila somatosensory neurons. Our findings uncover a function of Dscam in presynaptic size control and provide insights into how dysregulated Dscam may contribute to the pathogenesis of neurological disorders.
    Neuron 06/2013; 78(5):827-38. DOI:10.1016/j.neuron.2013.05.020 · 15.98 Impact Factor


Available from