Article

Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis

Robert Stone Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Avenue, Portland, OR 97232, USA.
Epilepsy research (Impact Factor: 2.19). 03/2009; 84(2-3):238-41. DOI: 10.1016/j.eplepsyres.2009.01.002
Source: PubMed

ABSTRACT A novel generation of silk-based brain implants engineered to release adenosine was recently shown to provide robust seizure suppression in kindled rats. As a first step to develop stem cell-coated silk-based 3D-scaffolds for the therapeutic long-term delivery of adenosine we engineered human mesenchymal stem cells (hMSCs) to release adenosine. Here we demonstrate reduction of chronic seizures in a mouse model of CA3-selective epileptogenesis after infrahippocampal transplantation of adenosine-releasing hMSCs.

Full-text

Available from: Tianfu Li, Jun 03, 2015
0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite newly developed antiepileptic drugs to suppress epileptic symptoms, approximately one third of patients remain drug refractory. Consequently, there is an urgent need to develop more effective therapeutic approaches to treat epilepsy. A great deal of evidence suggests that endogenous nucleosides, such as adenosine (Ado), guanosine (Guo), inosine (Ino) and uridine (Urd), participate in the regulation of pathomechanisms of epilepsy. Adenosine and its analogues, together with non-adenosine (non-Ado) nucleosides (e.g., Guo, Ino and Urd), have shown antiseizure activity. Adenosine kinase (ADK) inhibitors, Ado uptake inhibitors and Ado-releasing implants also have beneficial effects on epileptic seizures. These results suggest that nucleosides and their analogues, in addition to other modulators of the nucleoside system, could provide a new opportunity for the treatment of different types of epilepsies. Therefore, the aim of this review article is to summarize our present knowledge about the nucleoside system as a promising target in the treatment of epilepsy.
    Current Medicinal Chemistry 11/2013; DOI:10.2174/1381612819666131119154505 · 3.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epilepsy as one of the most common neurological disorders affects more than 50 million people worldwide with a higher prevalence rate in low-income countries. Excessive electrical discharges in neurons following neural cell damage or loss cause recurrent seizures. One of the most common and difficult to treat types of epilepsy is temporal lobe epilepsy (TLE) which results from hippocampal sclerosis. Nowadays, similar to other diseases, epilepsy also is a candidate for treatment with different types of stem cells. Various stem cell types were used for treatment of epilepsy in basic and experimental researches. Two major roles of stem cell therapy in epilepsy are prophylaxis against chronic epilepsy and amelioration cognitive function after the occurrence of TLE. Several animal studies have supported the use of these cells for treating drug-resistant TLE. Although stem cell therapy seems like a promising approach for treatment of epilepsy in the future however, there are some serious safety and ethical concerns that are needed to be eliminated before clinical application.
    Acta medica Iranica 09/2014; 52(9):651-5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomaterials of either natural or synthetic origin are used to fabricate implantable devices, as carriers for bioactive molecules or as substrates to facilitate tissue regeneration. For the design of medical devices it is fundamental to use materials characterized by non-immunogenicity, biocompatibility, slow and/or controllable biodegradability, non-toxicity, and structural integrity. The success of biomaterial-derived biodevices tends to be based on the biomimetic architecture of the materials. Recently, proteins from natural precursors that are essentially structural and functional polymers, have gained popularity as biomaterials. The silks produced by silkworms or spiders are of particular interest as versatile protein polymers. These form the basis for diverse biomedical applications that exploit their unique biochemical nature, biocompatibility and high mechanical strength. This review discusses and summarizes the latest advances in the engineering of silk-based biomaterials, focusing specifically on the fabrication of diverse bio-mimetic structures such as films, hydrogels, scaffolds, nanofibers and nanoparticles; their functionalization and potential for biomedical applications.
    Progress in Polymer Science 01/2013; 39(2). DOI:10.1016/j.progpolymsci.2013.09.002 · 26.85 Impact Factor