Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages

School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China.
Science of The Total Environment (Impact Factor: 4.1). 02/2009; 407(10):3385-91. DOI: 10.1016/j.scitotenv.2009.01.028
Source: PubMed

ABSTRACT Chemical Oxygen Demand (COD) composition in landfill leachate would vary as the disposal time extended. Leachates with different ages were collected from Laogang Refuse Landfill of Shanghai, the largest landfill in China with a placement scale of 7600 t refuse per day. To characterize COD composition in leachate, samples were size-fractioned into suspended fractions (>0.45 microm), colloid fraction (0.45 microm<fraction<1 K Da MW) and dissolved fractions (<1 KDa MW) based on the molecular weight distribution. The fractions <0.45 microm (including colloid fraction and dissolved fractions) in leachate were further divided into 6 fractions, i.e. hydrophobic bases (Ho-base), hydrophobic acids (Ho-acid), hydrophobic neutral (Ho-neutral), hydrophilic bases (Hi-base), hydrophilic acids (Hi-acid) and hydrophilic neutral (Hi-neutral). It was found that the ratio of TOC/TC in leachate decreased over time, indicating that the percentage of organic matters in leachate decreased as the disposal time extended. It was also observed that the hydrophobic fraction accounted to about 50% of the total matters presented in the fraction <0.45 microm of all leachate samples. The main components in <0.45 microm fraction were the Ho-acid, Hi-acid and Hi-base fractions. The percentage of Ho-acid in leachate decreased from 60.8% (2 a) to 43.2% (12 a). In addition, leachate with different ages was categorized into 3 phases according to the results of Principle component analysis (PCA). TOC/COD ranges of leachate in periods I, II and III were 40-54.6%, 16.9-41.3% and 10-38.9%, respectively, indicating that the COD contribution of non-carbon reduction substances increased over time in leachate. Hence, the corresponding landfill leachate treatment process should be modified according to the leachate characterization. The results obtained in this study might provide the important information for modeling, design, and operation of landfill leachate treatment systems.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clays are commonly used as liners in urban landfills. However, the reactive processes with landfill leachates, and in particular the role of accessory minerals is poorly known. The aim of this work is to evaluate the diffusion of a synthetic urban landfill leachate through compacted natural smectite-illitic clays containing carbonates and sulfates and to predict the functioning of the clay liner for different minor mineral proportions. The leachate, characterized by acidic pH conditions and high organic matter content, is a typical aqueous solution formed in the acetogenic phase of organic matter degradation in urban landfill areas. Medium-scale (11 cm) laboratory diffusion tests were performed over 77 days. Chloride diffusion coefficients, porosity changes, cation exchange constants and the sulfate reduction rate were quantitatively assessed by means of reactive transport modelling. The exchange capacity of the clays is responsible for NH4 + retention. However, the presence or absence of gypsum in the initial clay rock controls the functioning of the liner. Gypsum dissolution ensures a high sulfate concentration in the porewater and enhances the acetate consumption via sulfate reduction. Gypsum dissolution and the concomitant calcite precipitation do not significantly alter the porosity of the clay rock.
    Clay Minerals 06/2014; 49(3):443-455. DOI:10.1180/claymin.2014.049.3.07 · 0.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Municipal leachates are loaded with heavy metals that can contaminate surface water before discharge into a receiving body of water. The aim of this study is to evaluate the genotoxic effects of heavy metals generated by domestic waste on the common roach Rutilus rutilus in the last of the four interconnected ponds at the Etueffont landfill. We used random amplified polymorphic DNA (RAPD) since it has been shown to be a powerful means of detecting a broad range of DNA damage due to environmental contaminants. Our results show the ability of RAPD analysis to detect significant genetic alterations in roach DNA, after contamination with a set of metals contained in the landfill leachates in comparison to a roach from a non-polluted reference pond. Analysis of electrophoresis profiles indicates apparent changes such as the appearance of new bands or disappearance of bands as compared to the control. In fact, mixed smearing and laddering of DNA fragments in muscle samples support the genotoxic effects of metal deposits in the roach. This study is the first evidence found via the RAPD-PCR technique in the detection of pollutant impacts on fish exposed to landfill leachates.
    Ecotoxicology and Environmental Safety 03/2014; 101:90–96. DOI:10.1016/j.ecoenv.2013.12.014 · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.
    Environmental Science and Pollution Research 12/2012; 20(6). DOI:10.1007/s11356-012-1370-6 · 2.76 Impact Factor