Article

Structural characterization of a soluble amyloid beta-peptide oligomer.

Pharmaceutical Discovery Division, GPRD, Abbott Laboratories, Abbott Park, Illinois 60064-6098, USA.
Biochemistry (Impact Factor: 3.38). 03/2009; 48(9):1870-7. DOI: 10.1021/bi802046n
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is a neurodegenerative disorder that is linked to the presence of amyloid beta-peptides that can form insoluble fibrils or soluble oligomeric assemblies. Soluble forms are present in the brains and tissues of Alzheimer's patients, and their presence correlates with disease progression. Long-lived soluble forms can be generated in vitro by using small amounts of aliphatic hydrocarbon chains of detergents or fatty acids in preparations of amyloid beta-peptides. Using NMR, we have characterized soluble oligomers of Abeta preglobulomer and globulomer that are stable and alter synaptic activity. The NMR data indicate that these soluble forms have a mixed parallel and antiparallel beta-sheet structure that is different from fibrils which contain only parallel beta-sheets. Using the structural data, we engineered a disulfide bond into the soluble Abeta globulomer to give a "new" soluble antigen that is stable, homogeneous, and binds with the same affinity to selective antibodies as the parent wt globulomer.

0 Bookmarks
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Self association of the amyloid-β (Aβ42) peptide into oligomers, high molecular weight forms, fibrils and ultimately neuritic plaques, has been correlated with progressive cognitive decline in Alzheimer's disease. Thus, insights into the drivers of the aggregation pathway have the capacity to significantly contribute to our understanding of disease mechanism. Functional assays and a three-dimensional crystal structure of the P3 amyloidogenic region 18-41 of Aβ were used to identify residues important in self-association and to design novel non-aggregating variants of the peptide. Biophysical studies (gel filtration, SDS-PAGE, dynamic light scattering, thioflavin T assay, and electron microscopy) demonstrate that in contrast to wild type Aβ these targeted mutations lose the ability to self-associate. Loss of aggregation also correlates with reduced neuronal toxicity. Our results highlight residues and regions of the Aβ peptide important for future targeting agents aimed at the amelioration of Alzheimer's disease.
    Biochemical and Biophysical Research Communications 10/2014; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been well documented that β-amyloid (Aβ) peptide accumulation and aggregation in the brain plays a crucial role in the pathophysiology of Alzheimer’s disease (AD). However, a new orientation of the amyloid cascade hypothesis has evidenced that soluble forms of the peptide (sAβ) are involved in Aβ-induced cognitive impairment and cause rapid disruption of the synaptic mechanisms underlying memory. The primary aim of this study was to elucidate the effects of sAβ, acutely injected intracerebrally (i.c.v., 4 μM), on the short term and long term memory of young adult male rats, by using the novel object recognition task. Glutamatergic receptors have been proposed as mediating the effect of Aβ on synaptic plasticity and memory. Thus, we also investigated the effects of sAβ on prefrontal cortex (PFC) glutamate release and the specific contribution of N-methyl-D-aspartate (NMDA) receptor modulation to the effects of sAβ administration on the cognitive parameters evaluated. We found that a single i.c.v. injection of sAβ 2 h before testing did not alter the ability of rats to differentiate between a familiar and a novel object, in a short term memory test, while it was able to negatively affect consolidation/retrieval of long term memory. Moreover, a significant increase of glutamate levels was found in PFC of rats treated with the peptide 2 h earlier. Interestingly, memory deficit induced by sAβ was reversed by a NMDA-receptor antagonist, memantine (5 mg/kg i.p), administered immediately after the familiarization trial (T1). On the contrary, memantine administered 30 min before T1 trial, was not able to rescue long term memory impairment. Taken together, our results suggest that an acute i.c.v. injection of sAβ peptide interferes with the consolidation/retrieval of long term memory. Moreover, such sAβ-induced effect indicates the involvement of glutamatergic system, proposing that NMDA receptor inhibition might prevent or lead to the recovery of early cognitive impairment. http://journal.frontiersin.org/Journal/10.3389/fnbeh.2014.00332/full#h1
    Frontiers in Behavioral Neuroscience 09/2014; 8(332). · 4.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aggregation of the amyloid-β peptide (Aβ) to form fibrils and plaques is strongly associated with Alzheimer's disease (AD). Although it is well established that this process generates neurotoxicity, it is also heterogeneous with a variety of species being formed during the conversion process. This heterogeneity makes it difficult to detect and characterize each of the aggregates formed, which precludes establishing the specific features responsible for the neurotoxicity observed. Here we use pulse-labeling hydrogen-deuterium exchange experiments analyzed by electrospray ionization mass spectrometry (PL-HDX-ESI-MS) to distinguish three ensembles populated during the aggregation of the 40 and 42 residue forms of the Aβ peptide, Aβ40 and Aβ42, on the basis of differences in their persistent structure. Noticeably, two of them are more abundant at the beginning and at the end of the lag phase and are therefore not detectable by conventional assays such as Thioflavin T (ThT). The ensembles populated at different stages of the aggregation process have a surprisingly consistent average degree of exchange, indicating that there are definite structural transitions between the different stages of aggregation. To determine whether an ensemble of species with a given hydrogen exchange pattern correlates with neurotoxicity, we combined PL-HDX-ESI-MS experiments with parallel measurements of the neurotoxicity of the samples under study. The results of this dual approach show that the maximum toxicity correlates with the ensemble comprising HDX protected oligomers, indicating that development of persistent structure within Aβ oligomers is a determinant of neurotoxicity.
    ACS Chemical Biology 09/2014; · 5.44 Impact Factor