Structural Characterization of a Soluble Amyloid β-Peptide Oligomer

Pharmaceutical Discovery Division, GPRD, Abbott Laboratories, Abbott Park, Illinois 60064-6098, USA.
Biochemistry (Impact Factor: 3.02). 03/2009; 48(9):1870-7. DOI: 10.1021/bi802046n
Source: PubMed


Alzheimer's disease (AD) is a neurodegenerative disorder that is linked to the presence of amyloid beta-peptides that can form insoluble fibrils or soluble oligomeric assemblies. Soluble forms are present in the brains and tissues of Alzheimer's patients, and their presence correlates with disease progression. Long-lived soluble forms can be generated in vitro by using small amounts of aliphatic hydrocarbon chains of detergents or fatty acids in preparations of amyloid beta-peptides. Using NMR, we have characterized soluble oligomers of Abeta preglobulomer and globulomer that are stable and alter synaptic activity. The NMR data indicate that these soluble forms have a mixed parallel and antiparallel beta-sheet structure that is different from fibrils which contain only parallel beta-sheets. Using the structural data, we engineered a disulfide bond into the soluble Abeta globulomer to give a "new" soluble antigen that is stable, homogeneous, and binds with the same affinity to selective antibodies as the parent wt globulomer.

32 Reads
  • Source
    • "Moreover, given that Aβ oligomeric species act on independent targets, it seems of particular interest to understand the biological effects of a particular assembly form. Unlike Aβ assemblies purified from brain’s patients, commercial available Aβ fragments are considered useful tools as they are chemically defined, and can be easily characterized, from a structural point of view, by using several techniques, ranging from western blot (Jin et al., 2011) to nuclear magnetic resonance (Yu et al., 2009) and electrophoresis (Wiltfang et al., 1997). However, one of the best and most informative technique is atomic force microscopy (AFM; Kowalewski and Holtzman, 1999; Balducci et al., 2010), which provides a high-resolution image at the molecular level revealing details of protein structures. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been well documented that β-amyloid peptide accumulation and aggregation in the brain plays a crucial role in the pathophysiology of Alzheimer’s disease (AD). However, a new orientation of the amyloid cascade hypothesis has evidenced that soluble forms of the peptide (sAβ) are involved in Aβ-induced cognitive impairment and cause rapid disruption of the synaptic mechanisms underlying memory. The primary aim of this study was to elucidate the effects of sAβ, acutely injected intracerebrally (i.c.v., 4 µM), on the short term and long term memory of young adult male rats, by using the novel object recognition task. Glutamatergic receptors have been proposed as mediating the effect of Aβ on synaptic plasticity and memory. Thus, we also investigated the effects of sAβ on prefrontal cortex (PFC) glutamate release and the specific contribution of N-methyl-D-aspartate (NMDA) receptor modulation to the effects of sAβ administration on the cognitive parameters evaluated. We found that a single i.c.v. injection of sAβ 2h before testing did not alter the ability of rats to differentiate between a familiar and a novel object, in a short term memory test, while it was able to negatively affect consolidation/retrieval of long term memory. Moreover, a significant increase of glutamate levels was found in PFC of rats treated with the peptide 2 h earlier. Interestingly, memory deficit induced by sAβ was reversed by a NMDA-receptor antagonist, memantine (5 mg/kg i.p), administered immediately after the familiarization trial (T1). On the contrary, memantine administered 30 min before T1 trial, was not able to rescue long term memory impairment. Taken together, our results suggest that an acute i.c.v. injection of sAβ peptide interferes with the consolidation/retrieval of long term memory. Moreover, such sAβ-induced effect indicates the involvement of glutamatergic system, proposing that NMDA receptor inhibition might prevent or lead to the recovery of early cognitive impairment.
    Frontiers in Behavioral Neuroscience 09/2014; 8(332). DOI:10.3389/fnbeh.2014.00332 · 3.27 Impact Factor
  • Source
    • "In contrast, no binding of monomeric Aβ or soluble APP (sAPP) by β55 was observed. While some caution must be taken in the interpretation of the western blot given the documented effects of SDS on Aβ oligomer structure and aggregation [42]–[46], the colocalization of 6E10 and β55 bands provides further support for the binding of β55 to Aβ oligomers. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.
    PLoS ONE 02/2014; 9(2):e89901. DOI:10.1371/journal.pone.0089901 · 3.23 Impact Factor
  • Source
    • "Solid-state NMR experiments showed that Aβ40 assemblies adopted a well-defined structure, in which residues 22–39 formed β-sheets, whereas the N-terminus (residues 1–20) was unstructured. The characteristic Asp23–Lys28 turn, which previously had been identified as a key structural feature in Aβ fibrils [89] [90], monomers [91], and oligomers [92], was present in these Aβ assemblies [84]. Overall, the NMR data suggested a model in which EGCG binds to unfolded Aβ40 by aromatic interactions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal protein folding and self-assembly causes over 30 cureless human diseases for which no disease-modifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies - the green-tea derivative (-)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01's effects on amyloid beta-protein, alpha-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.
    12/2013; 4(4-4):385-409. DOI:10.2478/s13380-013-0137-y
Show more