Article

Periprosthetic strain magnitude-dependent upregulation of type I collagen synthesis in human osteoblasts through an ERK1/2 pathway.

Department of Orthopaedics, Shanghai 6th People's Hospital, Shanghai Jiaotong University, 600 Yishan Road, Shanghai, 200233, China.
International Orthopaedics (Impact Factor: 2.32). 03/2009; 33(5):1455-60. DOI: 10.1007/s00264-009-0735-z
Source: PubMed

ABSTRACT Human osteoblasts sense mechanical stimulation and synthesise type I collagen in periprosthetic osseointegration following total hip arthroplasty. However, the regulation of type I collagen synthesis by periprosthetic strain is unclear because the cellular-level strain magnitude remains unknown to date. Fortunately, the tissue-level strain in implanted femurs is measurable. According to the mechanism of strain amplification, the tissue-level strain was amplified 20 times to stretch human osteoblasts in this study. Elongation of 0.8-3.2% enhanced the mRNA level of type I collagen, whereas the release of procollagen type I C propeptide only increased at 2.4% and 3.2% elongation. Type I collagen expression increased with the activation of ERK1/2 phosphorylation in a strain-magnitude-dependent manner, whereas JNK and P38 were unaffected. The responses were completely inhibited by blocking the ERK1/2 pathway with U0126. The results indicate that type I collagen synthesis in human osteoblasts depends on the level of periprosthetic strain and ERK1/2 activation.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK/ERK1/2 kinase cascade, has recently been implicated in the regulation of lipid metabolism and fatty liver disease. However, its functional effect on cellular fatty acid composition is unknown. Herein, we examined the effect of a pharmacological inhibitor of MEK, the upstream kinase activator of ERK1/2, on fatty acid composition of hepatocellular carcinoma cell line HepG2. HepG2 cells cultured in RPMI-1640 were exposed to the commonly used ERK1/2 pathway inhibitor PD98059 and were investigated with respect to fatty acid composition by gas-liquid chromatography. Exposure of cells to the ERK1/2 pathway inhibitor induced an increase in monounsaturated fatty acids and the fatty acid desaturation index and a decrease in polyunsaturated fatty acid content. Specifically, we showed a significant increase of oleic acid (18:1n-9; +29%, P=0.003) and arachidonic acid (20:4n-6)/linoleic acid (18:2n-6) ratio (3.5-fold; P<0.001) in HepG2 cells. Cellular fatty acid composition of HepG2 cells appeared to be differentially regulated by ERK1/2 pathway, thus suggesting related metabolic pathways as potential mediators of the effects of ERK1/2 signaling on hepatic fatty acid composition.
    BioImpacts : BI. 01/2012; 2(3):145-50.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of nuclear factor kappaB by diverse bacteria regulates the secretion of chemokines and cytokines. Staphylococcus aureus (S. aureus)-infected osteoblasts can significantly increase the secretion of interleukin-6 and monocyte chemoattractant protein-1. The aim of this study was to investigate whether S. aureus can activate nuclear factor kappaB in human osteoblasts, and whether the activation of nuclear factor kappaB by S. aureus regulates the secretion of interleukin-6 and monocyte chemoattractant protein-1. Immunoblot and electrophoretic mobility shift assay were used to detect the degradation of IκBa and activation of nuclear factor kappaB in human osteoblasts in response to S. aureus, respectively. Enzyme-linked immunosorbent assay was used to measure the secretion of interleukin-6 and monocyte chemoattractant protein-1 in the supernatants. Lastly, carbobenzoxyl-l-leucinyl-l-leucinyl-l-leucinal, an inhibitor of the nuclear factor kappaB, was used to determine if activation of nuclear factor kappaB by S. aureus in human osteoblasts regulates the secretions of interleukin-6 and monocyte chemoattractant protein-1. Our results for the first time demonstrated that S. aureus can induce the degradation of IκBa and activation of nuclear factor kappaB in human osteoblasts in a time and dose-dependent manner. In addition, inhibition of nuclear factor kappaB by carbobenzoxyl-l-leucinyl-l-leucinyl-l-leucinal suppressed the secretion of interleukin-6 and monocyte chemoattractant protein-1 in the supernatants of S. aureus-infected human osteoblasts in a dose-dependent manner. These findings suggest that S. aureus can activate nuclear factor kappaB in human osteoblasts, and subsequently regulate the secretion of interleukin-6 and monocyte chemoattractant protein-1. The nuclear factor kappaB transcription factor regulates a number of genes involved in a wide variety of biological processes. Further study of the effects of nuclear factor kappaB activation on S. aureus-infected human osteoblast may provide us new insights into discovery of the immune mechanisms in osteomyelitis.
    The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases 06/2011; 15(3):189-94. · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology.
    Tissue Engineering Part A 09/2011; 18(3-4):277-84. · 4.64 Impact Factor

Full-text

Download
0 Downloads
Available from