Monitoring of cell cultures with LTCC microelectrode array.

Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664, Warsaw, Poland.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 03/2009; 393(8):2029-38. DOI: 10.1007/s00216-009-2651-x
Source: PubMed

ABSTRACT Monitoring of cell cultures in microbioreactors is a crucial task in cell bioassays and toxicological tests. In this work a novel tool based on a miniaturized sensor array fabricated using low-temperature cofired ceramics (LTCC) technology is presented. The developed device is applied to the monitoring of cell-culture media change, detection of the growth of various species, and in toxicological studies performed with the use of cells. Noninvasive monitoring performed with the LTCC microelectrode array can be applied for future cell-engineering purposes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Potentiometric sensors are attractive tools for the fabrication of various electronic tongues that can be used in wide area of applications, ranging from foodstuff recognition to environmental monitoring and medical diagnostics. Their main advantages are the ability to modify their selectivity (including cross-sensitivity effects) and the possibility of miniaturization using appropriate construction methods for the transducer part (e.g., with the use of solid-state technology). In this overview various examples of the design, performance, and applications of potentiometric electronic tongues are presented. The results summarize recent research in the field conducted in the Department of Microbioanalytics, Warsaw University of Technology (WUT).
    Sensors 01/2011; 11(5):4688-701. · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low temperature co-fired ceramic (LTCC) based microfluidic devices are being developed for point-of-care biomedical and environmental sensing to enable personalized health care. This article reviews the prospects of LTCC technology for microfluidic device development and its advantages and limitations in processing capabilities compared to silicon, glass and polymer processing. The current state of the art in LTCC-based processing techniques for fabrication of microfluidic components such as microchannels, chambers, microelectrodes and valves is presented. LTCC-based biosensing applications are discussed under the classification of (a) microreactors, (b) whole cell-based and (c) protein biosensors. Biocompatibility of LTCC pertaining to the development of biosensors and whole cell sensors is also discussed. Other significant applications of LTCC microfluidic systems for detection of environmental contaminants and toxins are also presented. Technological constraints and advantages of LTCC-based microfluidic system are elucidated in the conclusion. The LTCC-based microfluidic devices provide a viable platform for the development of point-of-care diagnostic systems for biosensing and environmental sensing applications.
    · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The viability of cells cultured in microsystems for drug screening purposes is usually tested with a variety of colorimetric/fluorescent methods. In this work we propose an alternative way of assessing cell viability-flow-through sensor array that can be connected in series with cell microbioreactors as compatible detection system. It is shown, that the presented device is capable of cytotoxic effect detection and estimation of cell viability after treatment with 1,4-dioxane and 5-fluorouracil, which proves that it can be used for truly non-invasive, fast, reliable, continuous cell culture monitoring in microscale.
    Biosensors & bioelectronics 07/2013; 51C:55-61. · 5.43 Impact Factor