Carpenito, C, Milone, MC, Hassan, R, Simonet, JC, Lakhal, M, Suhoski, MM et al.. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106: 3360-3365

Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2009; 106(9):3360-5. DOI: 10.1073/pnas.0813101106
Source: PubMed


Mesothelin is a cell-surface molecule over-expressed on a large fraction of carcinomas, and thus is an attractive target of immunotherapy. A molecularly targeted therapy for these cancers was created by engineering T cells to express a chimeric receptor with high affinity for human mesothelin. Lentiviral vectors were used to express a single-chain variable fragment that binds mesothelin and that is fused to signaling domains derived from T-cell receptor zeta, CD28, and CD137 (4-1BB). When stimulated by mesothelin, lentivirally transduced T cells were induced to proliferate, express the antiapoptotic gene Bcl-X(L), and secrete multiple cytokines, all features characteristic of central memory T cells. When transferred intratumorally or intravenously into NOD/scid/IL2rgamma(-/-) mice engrafted with large pre-established tumors, the engineered T cells reduced the tumor burden, and in some cases resulted in complete eradication of the tumors at low effector-to-target ratios. Incorporation of the CD137 signaling domain specifically reprogrammed cells for multifunctional cytokine secretion and enhanced persistence of T cells. These findings have important implications for adoptive immunotherapy of cancer, especially in the context of poorly immunogenic tumors. Genetically redirected T cells have promise of targeting T lymphocytes to tumor antigens, confer resistance to the tumor microenvironment, and providing immunosurveillance.

Download full-text


Available from: Angel Varela, May 13, 2015
  • Source
    • "DNA was synthesized by BlueHeron (Bothell, WA), using an optimization algorithm for codon usage in humans, and cloned into NcoI and XhoI sites of pMSGV1-28Z and pMSGV1-28-BBZ vectors. A CD28- containing second-generation CAR against MSLN was generated based on previously published sequences (Li et al., 2004; Carpenito et al., 2009) and cloned into MSGV1 retroviral vector. Evaluation of interferon-gamma (IFNg) secretion by CAR-transduced T cells was performed as described. "
    Dataset: PSCA CAR

  • Source
    • "Several classes of PRRs have been reviewed, such as TLRs, retinoic-acid inducible gene (RIG)-like receptors (RLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), DNA receptors (cytosolic sensors for DNA), scavenger receptors, and C-type lectin receptors (CLRs) (Kumar et al., 2009; Carrillo-Conde et al., 2011; Shen et al., 2013; Silva et al., 2013). In mammals, the most studied PRR class is the TLRs class. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
    Frontiers in Chemistry 11/2014; 2(105):1. DOI:10.3389/fchem.2014.00105
  • Source
    • "As such, CAR-modified T cells targeted to TAAs may be more effective than mAbs in generating durable tumor responses. In addition, it has been demonstrated that new-generation CARs containing the costimulatory signal domain of CD28 and/or 4-1BB, or other costimulatory molecules, enhance the function of the gene-modified T cells [10,11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The human epidermal growth factor receptor 2 (HER2) represents one of the most studied tumor-associated antigens (TAAs) for cancer immunotherapy. The monoclonal antibody (mAb) trastuzumab has improved the outcomes of patients with HER2+ breast cancer. However, a large number of HER2+ tumors are not responsive to, or become resistant to, trastuzumab-based therapy, and thus more effective therapies targeting HER2 are needed. Methods HER2-specific T cells were generated by the transfer of genes that encode chimeric antigen receptor (CAR). Using a multistep overlap extension PCR method, we constructed a novel, humanized HER2 CAR-containing, chA21 single-chain variable fragment (scFv) region of antigen-specific mAb and T-cell intracellular signaling chains made up of CD28 and CD3ζ. An interferon γ and interleukin 2 enzyme-linked immunosorbent assay and a chromium-51 release assay were used to evaluate the antitumor immune response of CAR T cells in coculture with tumor cells. Furthermore, SKBR3 tumor–bearing nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were treated with HER2 CAR T cells to evaluate antitumor activity. Human CD3+ T cell accumulation in tumor xenograft was detected by immunohistochemistry. Results chA21-28z CAR was successfully constructed, and both CD4+ and CD8+ T cells were transduced. The expanded HER2 CAR T cells expressed a central memory phenotype and specifically reacted against HER2+ tumor cell lines. Furthermore, the SKBR3 tumor xenograft model revealed that HER2 CAR T cells significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed robust accumulation of human CD3+ T cells in regressing SKBR3 lesions. Conclusions The results of this study show that novel chA21 scFv-based, HER2-specific CAR T cells not only recognized and killed HER2+ breast and ovarian cancer cells ex vivo but also induced regression of experimental breast cancer in vivo. Our data support further exploration of the HER2 CAR T-cell therapy for HER2-expressing cancers.
    Breast cancer research: BCR 06/2014; 16(3):R61. DOI:10.1186/bcr3674 · 5.49 Impact Factor
Show more