Article

Radially expanding transglial calcium waves in the intact cerebellum

Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2009; 106(9):3496-501. DOI: 10.1073/pnas.0809269106
Source: PubMed

ABSTRACT Multicellular glial calcium waves may locally regulate neural activity or brain energetics. Here, we report a diffusion-driven astrocytic signal in the normal, intact brain that spans many astrocytic processes in a confined volume without fully encompassing any one cell. By using 2-photon microscopy in rodent cerebellar cortex labeled with fluorescent indicator dyes or the calcium-sensor protein G-CaMP2, we discovered spontaneous calcium waves that filled approximately ellipsoidal domains of Bergmann glia processes. Waves spread in 3 dimensions at a speed of 4-11 microm/s to a diameter of approximately 50 microm, slowed during expansion, and were reversibly blocked by P2 receptor antagonists. Consistent with the hypothesis that ATP acts as a diffusible trigger of calcium release waves, local ejection of ATP triggered P2 receptor-mediated waves that were refractory to repeated activation. Transglial waves represent a means for purinergic signals to act with local specificity to modulate activity or energetics in local neural circuits.

0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 04/2015; DOI:10.1016/j.neuroscience.2015.04.001 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many cellular functions are driven by variations in the intracellular Ca(2+) concentration ([Ca(2+)]i), which may appear as a single-event transient [Ca(2+)]i elevation, repetitive [Ca(2+)]i increases known as Ca(2+) oscillations, or [Ca(2+)]i increases propagating in the cytoplasm as Ca(2+) waves. Additionally, [Ca(2+)]i changes can be communicated between cells as intercellular Ca(2+) waves (ICWs). ICWs are mediated by two possible mechanisms acting in parallel: one involving gap junctions that form channels directly linking the cytoplasm of adjacent cells and one involving a paracrine messenger, in most cases ATP, that is released into the extracellular space, leading to [Ca(2+)]i changes in neighboring cells. The intracellular messenger inositol 1,4,5-trisphosphate (IP3) that triggers Ca(2+) release from Ca(2+) stores is crucial in these two ICW propagation scenarios, and is also a potent trigger to initiate ICWs. Loading inactive, "caged" IP3 into cells followed by photolytic "uncaging" with UV light, thereby liberating IP3, is a well-established method to trigger [Ca(2+)]i changes in single cells that is also effective in initiating ICWs. We here describe a method to load cells with caged IP3 by local electroporation of monolayer cell cultures and to apply flash photolysis to increase intracellular IP3 and induce [Ca(2+)]i changes, or initiate ICWs. Moreover, the electroporation method allows loading of membrane-impermeable agents that interfere with IP3 and Ca(2+) signaling. © 2015 Cold Spring Harbor Laboratory Press.
    Cold Spring Harbor Protocols 03/2015; 2015(3):pdb.top066068. DOI:10.1101/pdb.top066068 · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In preclinical neuropharmacological research, molecular, cell-based, and systems using animals are well established. On the tissue level the situation is less comfortable, although during the last decades some effort went into establishing such systems, i.e. using slices of the vertebrate brain together with optical and electrophysiological techniques. However, these methods are neither fast, nor can they be automated or upscaled. By contrast, the chicken retina can be used as a suitable model. It is easy accessible and can be kept alive in vitro for hours up to days. Due to its structure, in addition the retina displays remarkable intrinsic optical signals, which can be easily used in experiments. Also to electrophysiological methods the retina is well accessible. In excitable tissue, to which the brain and the retina belong, propagating excitation waves can be expected, and the spreading depression is such a phenomenon. It has been first observed in the forties of the last century. Later, Martins-Ferreira established it in the chicken retina (retinal spreading depression or RSD). The electrophysiological characteristics of it are identical with those of the cortical SD. The metabolic differences are known and can be taken into account. The experimental advantage of the RSD compared to the cortical SD is the pronounced intrinsic optical signal (IOS) associated with the travelling wave. This is due to the maximum transparency of retinal tissue in the functional state; thus any physiological event will change it markedly and therefore can be easily seen even by naked eye. The theory can explain wave spread in one (action potentials), two (RSDs) and three dimensions (one heart beat). In this review we present the experimental and the excitable media context for the data interpretation using as example the cholinergic pharmacology in relation to functional syndromes. We also discuss the intrinsic optical signal and how to use it in pre-clinical research.
    Journal of Applied Statistics 09/2014; 12(5). DOI:10.2174/1570159X12666140630190800 · 0.45 Impact Factor