Article

Di(2-ethylhexyl) phthalate Is a Highly Potent Agonist for the Human Constitutive Androstane Receptor Splice Variant CAR2

Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
Molecular pharmacology (Impact Factor: 4.12). 03/2009; 75(5):1005-13. DOI: 10.1124/mol.108.053702
Source: PubMed

ABSTRACT The human constitutive androstane receptor (CAR, CAR1) regulates the expression of genes involved in xenobiotic metabolism in the liver. The CAR gene uses multiple alternative splicing events during pre-mRNA processing, thereby enhancing the CAR transcriptome. Previous reports have identified two prominent human CAR variants, CAR2 and CAR3, that possess four- and five-amino acid insertions in their ligand binding domains, respectively. Unlike the constitutively active reference form of the receptor, we now demonstrate that CAR2 is a ligand-activated receptor and comprises approximately 30% of the reference transcript level in human liver tissues in human hepatocytes. Furthermore, we identify the common plasticizer, di(2-ethylhexyl) phthalate (DEHP), as a highly potent and uniquely selective agonist of CAR2. Results from reporter transactivation and mammalian two-hybrid assays reveal that DEHP activates CAR2 at low nanomolar concentrations, results further supported by analysis of CAR target gene expression in primary human hepatocytes. In addition, comparative genomic analyses show that the typical mouse, rat, and marmoset models of DEHP toxicity cannot accurately profile potential human toxicity because of these species' inability to generate a CAR2-like transcript. The discovery that CAR2 is an ultimate human DEHP receptor identifies a novel pathway modulating human DEHP toxicity with potential clinical implications for a subset of patients undergoing critical care medical interventions.

Download full-text

Full-text

Available from: Scott S Auerbach, Oct 02, 2014
0 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rilpivirine and etravirine are second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs) indicated in the treatment of HIV/AIDS. Constitutive androstane receptor (CAR) regulates the expression of genes involved in various biological processes, including transport and biotransformation of drugs. We investigated the effect of rilpivirine and etravirine on the activity of the wild-type human CAR (hCAR-WT) and its hCAR-SV23 and hCAR-SV24 splice variants, and compared it with first-generation NNRTIs (efavirenz, nevirapine, and delavirdine).
    British Journal of Pharmacology 11/2014; 172(5). DOI:10.1111/bph.12997 · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a synergistic method using bioassay-directed liquid chromatography fractionation and time-of-flight mass spectrometry to guide and accelerate bioactive compound discovery. To steer purification and assays toward anticipated neutral lipid activators of a constitutive androstane receptor splice variant, a relative mass defect filter was calculated, based on the ratio of the mass defect to the measured ion mass, and used to reduce the number of candidate ion masses. Mass measurements often lack sufficient accuracy to provide unambiguous assignments of elemental compositions, and since the relative mass defect reflects fractional hydrogen content of ions, this value is largely determined by the hydrogen content of a compound's biosynthetic precursors. A relative mass defect window ranging from 600-1000 ppm, consistent with an assortment of lipids, was chosen to assess the number of candidate ions in fractions of fetal bovine serum. This filter reduced the number of candidate ion m/z values from 1345 to 892, which was further reduced to 21 by intensity and isotope filtering. Accurate mass measurements from time-of-flight mass spectrometry and fragment ion masses generated using nonselective collision-induced dissociation suggested dioctyl phthalate as one of few neutral lipid constituents in the active fraction. The identity of this compound was determined to be di(2-ethylhexyl) phthalate using GC/MS, and it was ranked as a promising candidate for reporter assay screening.
    Rapid Communications in Mass Spectrometry 12/2010; 24(24):3578-84. DOI:10.1002/rcm.4796 · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named “orphan receptors”. Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as “adopted” orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
    Molecular Aspects of Medicine 10/2009; DOI:10.1016/j.mam.2009.04.002 · 10.30 Impact Factor