Article

Effect of a direct-fed microbial (Primalac) on structure and ultrastructure of small intestine in turkey poults.

Department of Poultry Science, College of Agriculture, Tarbiat Modares University, Tehran, Iran.
Poultry Science (Impact Factor: 1.52). 04/2009; 88(3):491-503. DOI: 10.3382/ps.2008-00272
Source: PubMed

ABSTRACT The effects of dietary supplementation of the direct-fed microbial (DFM) Primalac in mash or crumbled feed on histological and ultrastructural changes of intestinal mucosa was determined in 2 populations of poults; 1 with and 1 without a Salmonella spp. challenge. Three hundred thirty-six 1-d-old female Large White turkey poults were randomly distributed into 8 treatment groups with 6 replicates of 7 poults in each pen. The poults were placed on 1 of 4 dietary treatments in a 2 x 2 x 2 factorial arrangement (mash or crumble feed, with or without DFM, not-challenged or challenged at 3 d of age). The DFM groups were fed a Primalac-supplemented diet from d 1 until the last day of the experiment (d 21). At 3 d of age, 50% of the poults were challenged with 1 mL of 10(10) cfu/ mL of Salmonella spp. (Salmonella enterica serovar Typhimurium, Salmonella Heidelberg, and Salmonella Kentucky) by oral gavage. The inoculated poults were housed in a separate room from nonchallenged controls. Feed and water were provided ad libitum for all birds. At d 21, 1 poult per pen (total of 6 poults per treatment) was randomly selected and killed humanely by cervical dislocation. After necropsy, the small intestine was removed, and tissue samples from duodenum, jejunum, and ileum were taken for light and electron microscopic evaluation. The DFM birds showed increased goblet cell (GC) numbers, total GC area, GC mean size, mucosal thickness, and a greater number of segmented filamentous bacteria compared with controls. Changes in intestinal morphology as observed in this study support the concept that poultry gut health and function, and ultimately bird performance, can be improved by dietary supplementation with DFM products such as Primalac as used in this study.

0 Bookmarks
 · 
207 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.
    Frontiers in microbiology. 01/2014; 5:223.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Segmented filamentous bacteria (SFB) are commensal bacteria that were first identified in the ilea of mice and rats. Morphologically similar bacteria occur in a broad range of host species, but all strains have been refractory to in vitro culture thus far. Although SFB were once considered innocuous members of the intestinal microbiota of laboratory rodents, they are now known to affect the development of the immune system in rodents and, subsequently, the phenotype of models of both enteric and extraintestinal disease. Therefore, SFB represent long-recognized commensal bacteria serving as an intercurrent variable in studies using rodent models of disease. Here we describe the basic biology of SFB and discuss the immunologic and physiologic effects of colonization with SFB, with particular attention to their effects on rodent models of disease. In addition, we propose that SFB represent only the 'tip of the iceberg' in our understanding of the influence of the microbiota on model phenotypes. As next-generation sequencing techniques are increasingly used to investigate organisms that are refractory to culture, we are likely to identify other commensal microbes that alter the models we use. This review underscores the need to characterize such host-microbe interactions, given that animal research represents a critical tool that is particularly vulnerable to scrutiny in an era of decreasing financial resources and increasing accountability for the use of animal models.
    Comparative medicine 01/2014; 64(2):90-8. · 1.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (p<0.05). Inclusion of Bacillus subtilis based probiotic in the diets also significantly affected feed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal cell proliferation and consequently efficient nutrient absorption.
    Asian Australasian Journal of Animal Sciences 09/2012; 25(9):1285-93. · 0.64 Impact Factor