Genome wide ChIP-chip analyses reveal important roles for CTCF in Drosophila genome organization

The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
Developmental Biology (Impact Factor: 3.64). 02/2009; 328(2):518-28. DOI: 10.1016/j.ydbio.2008.12.039
Source: PubMed

ABSTRACT Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.

Download full-text


Available from: Victor V Lobanenkov, Jun 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome.
    Genes & development 08/2011; 25(16):1686-701. DOI:10.1101/gad.16651211 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this report we demonstrate that the herpes simplex virus type 1 reiteration element 1 (RE1) (nt: 117158-117353) in concert with its flanking sequences is both a cell specific and stimulus inducible regulatory domain. This region of the virus genome and specifically the RE1 supports differential reporter gene expression in both baby hamster kidney cells and disassociated rat trigeminal ganglia and is present within a region that is implicated in regulating latency of the virus in neuronal cells. Further we demonstrate that this locus is a transcriptional regulatory domain and a target for the transcription factor CCCTC binding protein.
    FEBS letters 09/2009; 583(20):3335-8. DOI:10.1016/j.febslet.2009.09.037 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulators are regulatory DNA elements that participate in the modulation of the interactions between enhancers and promoters. Depending on the situation, insulators can either stabilize or destroy the contacts between enhancers and promoters. A possible explanation for the activity of insulators is their ability to directly interact with gene promoters. In the present study, it was demonstrated that, in model systems, a 1A2 insulator could interact with the core sequence of an hsp70 promoter. In this case, the insulator protein CP190 is found on the hsp70 promoter, which depends on the presence of an insulator in the transgene. The data obtained are consistent with the model, which implies that direct contacts between insulators and promoters make a considerable contribution to the modulation of the interactions between insulators and promoters.
    Russian Journal of Genetics 04/2013; 49(4). DOI:10.1134/S1022795413040029 · 0.41 Impact Factor