Article

mTOR-dependent signalling in Alzheimer's disease

Karolinska Institute, Department of Neurobiology, Care Sciences and Society, KI-ADRC, Stockholm, Sweden.
Journal of Cellular and Molecular Medicine (Impact Factor: 3.7). 01/2009; 12(6B):2525-32. DOI: 10.1111/j.1582-4934.2008.00509.x
Source: PubMed

ABSTRACT Neurodegeneration and neurofibrillary degeneration are the two main pathological mechanisms of cognitive impairments in Alzheimer's disease (AD). It is not clear what factors determine the fates of neurons during the progress of the disease. Emerging evidence has suggested that mTOR-dependent signalling is involved in the two types of degeneration in AD brains. This review focuses on the roles of mTOR-dependent signalling in the pathogenesis of AD. It summarizes the recent advancements in the understanding of its roles in neurodegeneration and neurofibrillary degeneration, as well as the evidence achieved when mTOR-related signalling components were tested as potential biomarkers of cognitive impairments in the clinical diagnosis of AD.

0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a housekeeping process responsible for the bulk degradation of misfolded protein aggregates and damaged organelles through the lysosomal machinery. Given its key role as a cellular quality control mechanism, autophagy is now a focus of intense scrutiny in Alzheimer's disease (AD). The hallmarks of this devastating neurodegenerative disease are the accumulation of misfolded amyloid-β (Aβ) peptide and hyperphosphorylated tau protein and neuronal loss, which are accompanied by mitochondrial dysfunction and endoplasmic reticulum (ER) stress, suggesting that faulty autophagy is a contributing factor to AD pathology. Indeed, the AD brain is characterized by a massive accumulation of autophagic vacuoles within large swellings along dystrophic neurites and defects at different steps of the autophagic-lysosomal pathway. In this sense, this review provides an overview on the role of autophagy on Aβ metabolism, tau processing and clearance, and the contribution of ER-phagy and mitophagy to AD pathology. From a therapeutic perspective, this review also intends to clarify whether, when, and how autophagy can be targeted to efficaciously counteract AD-related symptomatic and neuropathological features.
    DNA and Cell Biology 02/2015; DOI:10.1089/dna.2014.2757 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
    Neuron 10/2014; 84(2):275-291. DOI:10.1016/j.neuron.2014.09.034 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compelling evidence indicates that the mammalian target of rapamycin (mTOR) signaling pathway is involved in cellular senescence, organismal aging and age-dependent diseases. mTOR is a conserved serine/threonine kinase that is known to be part of two different protein complexes: mTORC1 and mTORC2, which differ in some components and in upstream and downstream signalling. In multicellular organisms, mTOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy conditions. Growing studies highlight that disturbance in mTOR signalling in the brain affects multiple pathways including glucose metabolism, energy production, mitochondrial function, cell growth and autophagy. All these events are key players in age-related cognitive decline such as development of Alzheimer disease (AD). The current review discusses the main regulatory roles of mTOR signalling in the brain, in particular focusing on autophagy, glucose metabolism and mitochondrial functions. Targeting mTOR in the CNS can offer new prospective for drug discovery; however further studies are needed for a comprehensive understanding of mTOR, which lies at the crossroads of multiple signals involved in AD etiology and pathogenesis. Copyright © 2015. Published by Elsevier Inc.
    Neurobiology of Disease 03/2015; 101. DOI:10.1016/j.nbd.2015.03.014 · 5.20 Impact Factor

Preview

Download
0 Downloads