Article

TGF-beta Receptor Inactivation and Mutant Kras Induce Intestinal Neoplasms in Mice via a beta-Catenin-independent Pathway

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
Gastroenterology (Impact Factor: 13.93). 02/2009; 136(5):1680-8.e7. DOI: 10.1053/j.gastro.2009.01.066
Source: PubMed

ABSTRACT During colorectal cancer pathogenesis, mutations and epigenetic events cause neoplastic behavior in epithelial cells by deregulating the Wnt, Ras-Raf-extracellular signal-regulated kinase (ERK), and transforming growth factor (TGF)-beta-signaling pathways, among others. The TGF-beta-signaling pathway is often inactivated in colon cancer cells by mutations in the gene encoding the TGF-beta receptor TGFBR2. The RAS-RAF-ERK pathway is frequently up-regulated in colon cancer via mutational activation of KRAS or BRAF. We assessed how these pathways interact in vivo and affect formation of colorectal tumors.
We analyzed intestinal tumors that arose in mice that express an oncogenic (active) form of Kras and that have Tgfbr2 inactivations-2 common molecular events observed in human colorectal tumors. LSL-KrasG12D mice were crossed with Villin-Cre;Tgfbr2E2flx/E2flx mice, which do not express Tgfbr2 in the intestinal epithelium.
Neither inactivation of Tgfbr2 nor expression of oncogenic Kras alone was sufficient to induce formation of intestinal neoplasms. Histologic abnormalities arose in mice that expressed Kras, but only the combination of Tgfbr2 inactivation and Kras activation led to intestinal neoplasms and metastases. The cancers arose via a beta-catenin-independent mechanism; the epidermal growth factor-signaling pathway was also activated. Cells in the resulting tumors proliferated at higher rates, expressed decreased levels of p15, and expressed increased levels of cyclin D1 and cdk4, compared with control cells.
A combination of inactivation of the TGF-beta-signaling pathway and expression of oncogenic Kras leads to formation of invasive intestinal neoplasms through a beta-catenin-independent pathway; these adenocarcinomas have the capacity to metastasize.

0 Followers
 · 
195 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: TGF-β is an important biological mediator. It regulates a wide range of functions including embryonic development, wound healing, organ development, immuno-modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells, a phenomenon known as TGF-β paradox. TGF-β stimulation in cancer cells leads to a differential Erk activation, which srves as the basis of TGF-β paradox between benign and cancer cells. The critical events of TGF-β mediated Erk activation are suppressed TBRs and elevated TGF-β in tumor cells but not in benign cells. These events form the basis of the "vicious cycle of TGF-β signaling". The term "vicious cycle", implies that, with each advancing cycle of TGF-β signaling, the tumor will accumulate more TGF-β and will be more "aggressive" than that of the previous cycle. Understanding this vicious cycle of TGF-β signaling in tumor progression and metastasis will help us to predict indolent from aggressive cancers and will help us to develop novel anti-cancer strategies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic alterations in the TGFβ signaling pathway in combination with oncogenic alterations lead to cancer development in the intestines. However, the mechanisms of TGFβ signaling suppression in malignant progression of intestinal tumors have not yet been fully understood. We have examined Apc(Δ716) Tgfbr2(ΔIEC) compound mutant mice that carry mutations in Apc and Tgfbr2 genes in the intestinal epithelial cells. We found inflammatory microenvironment only in the invasive intestinal adenocarcinomas but not in noninvasive benign polyps of the same mice. We thus treated simple Tgfbr2(ΔIEC) mice with dextran sodium sulfate (DSS) that causes ulcerative colitis. Importantly, these Tgfbr2(ΔIEC) mice developed invasive colon cancer associated with chronic inflammation. We also found that TGFβ signaling is suppressed in human colitis-associated colon cancer cells. In the mouse invasive tumors, macrophages infiltrated and expressed MT1-MMP, causing MMP2 activation. These results suggest that inflammatory microenvironment contributes to submucosal invasion of TGFβ signaling-repressed epithelial cells through activation of MMP2. We further found that regeneration was impaired in Tgfbr2(ΔIEC) mice for intestinal mucosa damaged by DSS treatment or X-ray irradiation, resulting in the expansion of undifferentiated epithelial cell population. Moreover, organoids of intestinal epithelial cells cultured from irradiated Tgfbr2(ΔIEC) mice formed "long crypts" in Matrigel, suggesting acquisition of an invasive phenotype into the extracellular matrix. These results, taken together, indicate that a simple genetic alteration in the TGFβ signaling pathway in the inflamed and regenerating intestinal mucosa can cause invasive intestinal tumors. Such a mechanism may play a role in the colon carcinogenesis associated with inflammatory bowel disease in humans. Cancer Res; 75(4); 766-76. ©2015 AACR. ©2015 American Association for Cancer Research.
    Cancer Research 02/2015; 75(4):766-76. DOI:10.1158/0008-5472.CAN-14-2036 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background MicroRNAs (miRNAs) have been reported to play crucial roles in regulating a variety of genes pivotal for tumor metastasis. MicroRNA-301a (miR-301a) is overexpressed and displays oncogenic activity in many cancers. However, little is known about the potential roles of miR-301a in colorectal cancer (CRC).Methods Taqman probe stem-loop real-time PCR was used to quantitatively measure the expression level of miR-301a in 48 cases of CRC tissues and the matched adjacent non-tumor mucosa as well as in CRC cells lines. miR-301a mimics and inhibitors were used to up-regulate and down-regulate miR-301a in CRC cells, respectively; lentivirus was used to construct miR-301a stably up- and down-regulated CRC cell lines. Metastasis ability was evaluated by transwell and wound healing assays while invasion was measured by transwell coated with matrix gel in vitro; in vivo metastasis was performed on nude mice model. The target of miR-301a was predicted by TargetScan software and validated by qRT-PCR, immunohistochemistry, western blot and luciferase reporter gene assay.ResultsThe expression of miR-301a was significantly higher in lymph node metastasis positive CRC samples compared with negative ones. Downregulation of miR-301a significantly inhibited the migration and invasion both in vitro and in vivo while forced up-regulation of miR-301a promoted migration and invasion. TGFBR2 was identified to be the downstream target of miR-301a. Knockdown of TGFBR2 in cells treated by miR-301a inhibitor elevated the previously abrogated migration and invasion.Conclusions Our data indicated that miR-301a correlated with the metastatic and invasive ability in human colorectal cancers and miR-301a exerted its role as oncogene by targeting TGFBR2.
    Journal of Experimental & Clinical Cancer Research 12/2014; 33(1):780. DOI:10.1186/PREACCEPT-1787320352142985 · 3.27 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
Jun 30, 2014