The relation between Glasgow Coma Scale score and later cerebral atrophy in paediatric traumatic brain injury

E.B. Singleton Department of Diagnostic Imaging, Texas Children's Hospital, Houston, TX, USA.
Brain Injury (Impact Factor: 1.86). 04/2009; 23(3):228-33. DOI: 10.1080/02699050802672789
Source: PubMed

ABSTRACT To examine initial Glasgow Coma Scale (GCS) score and its relationship with later cerebral atrophy in children with traumatic brain injury (TBI) using Quantitative Magnetic Resonance Imaging (QMRI) at 4 months post-injury. It was hypothesized that a lower GCS score would predict later generalized atrophy. As a guide in assessing paediatric TBI patients, the probability of developing chronic cerebral atrophy was determined based on the initial GCS score.
The probability model used data from 45 paediatric patients (mean age = 13.6) with mild-to-severe TBI and 41 paediatric (mean age = 12.4) orthopaedically-injured children.
This study found a 24% increase in the odds of developing an abnormal ventricle-to-brain ratio (VBR) and a 27% increase in the odds of developing reduced white matter percentage on neuroimaging with each numerical drop in GCS score. Logistic regression models with cut-offs determined by normative QMRI data confirmed that a lower initial GCS score predicts later atrophy.
GCS is a commonly used measure of injury severity. It has proven to be a prognostic indicator of cognitive recovery and functional outcome and is also predictive of later parenchymal change.

1 Follower
  • Source
    Cluster Analysis in Neuropsychological Research: Recent Applications, Edited by Daniel N. allen, Gerald Goldstein, 01/2013: chapter Classification of Traumatic Brain Injury Severity: A Neuropsychological Approach: pages 95-123; Springer Publishing Company., ISBN: 978-1461467434
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.
    Frontiers in Human Neuroscience 08/2013; 7:395. DOI:10.3389/fnhum.2013.00395 · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.
    Neuropsychology Review 08/2013; DOI:10.1007/s11065-013-9237-2 · 5.40 Impact Factor